欢迎登录材料期刊网

材料期刊网

高级检索

总结了影响高温磁体使用温响,概括了高温永磁体Sm(CoCuFeZr)z的矫顽力机理,并探讨了高温永磁体Sm(CoCuFeZr)z今后的研究方向.

参考文献

[1] 王成德 .550℃高温永磁铁[J].金属材料研究,2001,27(02):55.
[2] Christina H. Chen;Marlin S. Walmer;Michael H. Walmer .Magnetic pinning strength for the new Sm-TM magnetic materials for use up to 550℃[J].Journal of Applied Physics,2000(9):6719-6721.
[3] Zhang Y.;Hadjipanayis GC.;Liu JF.;Walmer MS.;Krishnan KM.;Corte-Real M. .Magnetic hardening studies in sintered Sm(Co,Cu-x,Fe,Zr)(z) 2 : 17 high temperature magnets[J].Journal of Applied Physics,2000(9 Pt.3):6722-6724.
[4] Hadjipanayis GC.;Zhang Y.;Chui ST.;Liu JF.;Chen C. Kronmuller H.;Tang W. .High temperature 2 : 17 magnets: Relationship of magnetic properties to microstructure and processing[J].IEEE Transactions on Magnetics,2000(5 Pt.1):3382-3387.
[5] Sam Liu;Jie Yang .New sintered high temperature Sm-Co based permanent magnet materials[J].IEEE Transactions on Magnetics,1999(5):3325-3327.
[6] Liu S.;Doyle G.;Yang J.;Kuhl GE.;Chen C.;Walmer MS.;Walmer MH.;Potts G. .Effect of z value on high temperature performance of Sm(Co,Fe,Cu,Zr)(z) with z=7.14-8.10[J].IEEE Transactions on Magnetics,2000(5 Pt.1):3297-3299.
[7] Marlin S W et al.A new class of Sm-TM magnets for operating temperature up to 550℃[J].IEEE Transactions on Magnetics,2000,MAG36(05):3376.
[8] Kim AS. .High temperature stability of SmTM magnets[J].Journal of Applied Physics,1998(11 Pt.2):6715-6717.
[9] Kim AS. .DESIGN OF HIGH TEMPERATURE PERMANENT MAGNETS[J].Journal of Applied Physics,1997(8 Pt.2b):5609-5611.
[10] 郭朝晖,李卫.新型高温稀土永磁体的研究概况[J].金属功能材料,2000(05):1-6.
[11] Liu J F et al.High-temperature magnetic properties and microstructural analysis of Sm (Co, Cu, Fe, Zr)z permanent magnets[J].Journal of Magnetism and Magnetic Materials,1999,202:69.
[12] Liu J.F.;Ding Y.;Hadjipanayis G.C. .Effect of iron on the high temperature magnetic properties and microstructure of Sm(Co, Fe, Cu, Zr)_z permanent magnets[J].Journal of Applied Physics,1999(3):1670-0.
[13] 兰德年 等.Fe含量对高矫顽力Sm(CoFeCuZr)z磁体磁性能的影响[J].金属材料研究,1983,9(02):18.
[14] Lectard E et al.Saturation Magnatization and Anisotropy Fields in Sm(Co1-xCux)5 Phase[J].Journal of Applied Physics,1994,75(10):6277.
[15] W. Tang;Y. Zhang;G. C. Hadjipanayis .Effect of Zr on the microstructure and magnetic properties of Sm(Co_(bal)Fe_(0.1)Cu_(0.088)Zr_(x))_(8.5) magnets[J].Journal of Applied Physics,2000(1):399-403.
[16] Liu J.F.;Zhang Y.;Dimitrov D.;Hadjipanayis G.C. .Microstructure and high temperature magnetic properties of Sm(Co, Cu, Fe, Zr)_z (z = 6.7-9.1) permanent magnets[J].Journal of Applied Physics,1999(5):2800-0.
[17] Rabenberg L et al.Microstructures of Precipitation-hardened SmCo Permanent Magnets[J].Journal of Applied Physics,1982,53(05):2389.
[18] Streibl B.;Schrefl T.;Fidler J. .Domain wall pinning in high temperature SM(Co, Fe, Cu, Zr)(7-8) magnets[J].Journal of Applied Physics,2000(9 Pt.2):4765-4767.
[19] Tang W et al.High-temperature magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets[J].Journal of Magnetism and Magnetic Materials,2000,212:138.
[20] Rothworf F.Enhancement of coercitivity by heat treatment of Sm (CoCuFeZr)7.s magnets[A].,1982:567.
[21] Chou Sochen.The reversible changes of coercivities and microstructure of Sm (CoCuFeZr)7. 4 alloy during multiple step aging[A].,1982:694.
[22] Rabenberg L et al.Microstructures of precipitation-hardened SmCo permanent magnets[J].Journal of Applied Physics,1982,53(03):2389.
[23] Liu S.;Doyle G.;Potts G.;Kuhl GE.;Yang J. .Abnormal temperature dependence of intrinsic coercivity in sintered Sm-Co-based permanent magnets[J].Journal of Applied Physics,2000(9 Pt.3):6728-6730.
[24] Liu S et al.Temperature dependence of coercivity in SmaTM17 magnets and domain wall motion in magnetic materials[J].IEEE Transactions on Magnetics,2001,MAG37(04):2521.
[25] Tang W et al.Temperature dependence of coercivity and magnetization reversal mechanism in Sm (Cobal Fe0.1 CuyZr0.04)7. 0 magnets[J].IEEE Transactions on Magnetics,2001,MAG37(04):2515.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%