欢迎登录材料期刊网

材料期刊网

高级检索

与传统的金属导热材料相比,炭基功能材料具有热导率高、密度小、耐高温、比强度和比模量高等优点,因而备受关注.主要介绍了近年来碳纤维(CF)及其复合材料、碳纳米管(CNTs)复合材料、泡沫碳、高取向热解石墨(HOPG)等高导热炭基功能材料的研究进展.

参考文献

[1] 储九荣,张晓辉,徐传骧.导热高分子材料的研究与应用[J].高分子材料科学与工程,2000(04):17-21.
[2] 邱海鹏,刘朗.高导热炭基功能材料[J].新型炭材料,2002(04):80.
[3] Kim P.;Majumdar A.;McEuen PL.;Shi L. .Thermal transport measurements of individual multiwalled nanotubes - art. no. 215502[J].Physical review letters,2001(21):5502-0.
[4] Chen Yumao;Ting JyhMing .Ultra high thermal conductivity polymer composites[J].Carbon,2002,40:359.
[5] 肖长发.纤维复合材料-纤维、基体、力学性能[M].北京:中国石化出版社,1995
[6] Fitzer Erich .Future of carbon-carbon composites[J].Carbon,1987,25(02):163.
[7] Lee JK.;Ju JB.;Cho BW.;Cho WI.;Park D.;Yun KS.;An KW. .Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(9):1299-1305.
[8] Zhenyu Ryu;Haiqin Rong;Jingtang Zheng;Maozhang Wang;Bijiang Zhang .Microstructure and chemical analysis of PAN-based activated carbon fibers prepared by different activation methods[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(7):1144-1147.
[9] Zhenyu Ryu;Jingtang Zheng;Maozhang Wang;Bijiang Zhang .Nitrogen Adsorption Studies of PAN-Based Activated Carbon Fibers Prepared by Different Activation Methods[J].Journal of Colloid and Interface Science,2000(2):312-319.
[10] Ryu ZY.;Wang MZ.;Zheng JT. .Porous structure of PAN-based activated carbon fibers[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(4):427-432.
[11] Soo-Jin Park;Min-Kang Seo;Hak-Yong Kim;Douk-Rae Lee .Studies on PAN-based carbon fibers irradiated by Ar~+ ion beams[J].Journal of Colloid and Interface Science,2003(2):393-398.
[12] Soo-Jin Park;Min-Kang Seo;Young-Seak Lee .Surface characteristics of fluorine-modified PAN-based carbon fibers[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(4):723-730.
[13] M.C. Paiva;P. Koasthane;D.D. Edie .UV stabilization route for melt-processible PAN-based carbon fibers[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(7):1399-1409.
[14] 邱海鹏,宋永忠,郭全贵,翟更太,刘朗.高导热炭纤维及其炭基复合材料[J].功能材料,2002(05):473-476.
[15] Stevens T .Carbon fiber poised to dominate[J].Materials Engineering,1990,107(08):35.
[16] Gallego NC.;Nysten B.;Issi JP.;Treleaven JW.;Deshpande GV.;Edie DD. .The thermal conductivity of ribbon-shaped carbon fibers[J].Carbon: An International Journal Sponsored by the American Carbon Society,2000(7):1003-1010.
[17] Gallego N C;Edie D D .Structure-property relationships for high thermal conductivity carbon fibers[J].Composites Part A:Applied Science and Manufacturing,2001,32:1031.
[18] Max L Lake .Simple process produces high modulus carbon fibers at much lower cost[J].Materials Technology,1996,11(04):137.
[19] Ting JM.;Lake ML. .VAPOR GROWN CARBON FIBER REINFORCED ALUMINUM COMPOSITES WITH VERY HIGH THERMAL CONDUCTIVITY[J].Journal of Materials Research,1995(2):247-250.
[20] Li Y.Y. .Formation of vapor grown carbon fibers with fulfuric catalyst precursors and nitrogen as carrier gas[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(1):91-100.
[21] Savas Berber;Young Kyun Kwon;David Tománek .Unusually high thermal conductivity of carbon nanotubes[J].Physical Review Letters,2000,84:4613.
[22] Nan CW.;Shi Z.;Lin Y. .A simple model for thermal conductivity of carbon nanotube-based composites[J].Chemical Physics Letters,2003(5-6):666-669.
[23] C. H. Liu;H. Huang;Y. Wu;S. S. Fan .Thermal conductivity improvement of silicone elastomer with carbon nanotube loading[J].Applied physics letters,2004(21):4248-4250.
[24] Nan Cewen;Liu Gang;Lin Yuanhua et al.Interface effect on thermal conductivity of carbon nanotube composites[J].Applied Physics Letters,2004,85(16):3549.
[25] Huxtable S;Cahill D;Shenogin S et al.Interfacial heat flow in carbon nanotube suspensions[J].Nature Materials,2003,2:731.
[26] Klett J.;Romine E.;Walls C.;Burchell T.;Hardy R. .High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties[J].Carbon: An International Journal Sponsored by the American Carbon Society,2000(7):953-973.
[27] Watanabe F;Mochida I .Structural and thermal characteristics of highly graphitizable AR-Foam[J].TANSO,2004,212:99.
[28] Yang J;Shen Z;Hao Z .Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core[J].CARBON,2004,42:1882.
[29] Gaies D;Faber K T .Thermal properties of pitch-derived graphite foam[J].Carbon,2002,40:1137.
[30] 张淑娟.浅析热解石墨的制造与应用[J].炭素,1995(01):13-16.
[31] Klemens P G;Pedraza D F .Thermal conductivity of graphite in the basal plane[J].CARBON,1994,32(04):735.
[32] Kastelein B;van Bergen R D;Postma H et al.Thermal conductance of highly oriented pyrolytic graphite along the c-direction at very low temperatures including magnetic field effects[J].Carbon,1992,30(06):845.
[33] Bonnissel M;Luo L;Tondeur D .Compacted exfoliated natural graphite As heat conduction medium[J].Carbon,2001,39:2151.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%