{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文采用磁控溅射方法在Pt/TiO2/SiO2/Si(111)基片上制备了多晶BiFeO3 (BFO)薄膜,并构架了Pt/BFO/Pt异质结电容器.利用X射线衍射(XRD)、铁电测试仪等手段研究了保持温度对BFO薄膜结构和性能的影响.XRD图谱表明制备的BFO薄膜均为多晶结构,在保持温度400℃±2℃的区间内得到的BFO薄膜不含明显杂相,其它的温度均有明显的杂相.在保持温度为400℃时得到了较为饱和的电滞回线,在900nm厚度的情况下,剩余极化强度仍可以达到Pr> 40 μC/cm2,达到了实际应用的要求Pr>10μC/cm2.漏电流拟合机制表明在低场下属于欧姆机制,在高场下比较接近空间电荷限制电流(SCLC)机制.","authors":[{"authorName":"郝彦磊","id":"957d6d6d-0dee-408b-a770-a134920ce568","originalAuthorName":"郝彦磊"},{"authorName":"刘保亭","id":"99afdbbf-633a-44e7-97be-1d4d32db7218","originalAuthorName":"刘保亭"},{"authorName":"彭增伟","id":"3abe76ee-9f10-4cc7-b588-0445e9c843e0","originalAuthorName":"彭增伟"},{"authorName":"贾冬梅","id":"878e300a-e2ee-4a06-8888-f2c3a69ffa6d","originalAuthorName":"贾冬梅"},{"authorName":"朱慧娟","id":"c00095b6-3d8a-4447-8942-eadd96487834","originalAuthorName":"朱慧娟"},{"authorName":"张宪贵","id":"470a0ebc-5622-4439-a70f-c4b0b2cc9f2a","originalAuthorName":"张宪贵"}],"doi":"","fpage":"246","id":"2ef4d15b-7b67-44d5-98cc-9a443c52af89","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"13cb93a7-ee2b-406a-98d9-5dfd4792fd6a","keyword":"磁控溅射","originalKeyword":"偏轴磁控溅射"},{"id":"6d71f590-8b35-4aad-8655-90793b7eb615","keyword":"保持温度","originalKeyword":"保持温度"},{"id":"0c1ace96-91e3-444f-82d6-2870c6051279","keyword":"XRD","originalKeyword":"XRD"},{"id":"93d3a495-472c-45a1-a4e4-01f42059e750","keyword":"BiFeO3","originalKeyword":"BiFeO3"}],"language":"zh","publisherId":"rgjtxb98201302011","title":"保持温度对磁控溅射法制备BiFeO3薄膜结构和性能的影响","volume":"42","year":"2013"},{"abstractinfo":"采用90°离磁控溅射法,在MgAl2O4(001)单晶基片上自组装生长了Pb(Zr0.52Ti0.48)O3-NiFe2O4 (PZT-NFO)复合磁电薄膜,并研究了基片温度、氩氧比和溅射功率等因素对薄膜结构和性能的影响.结果表明,适合生长PZT-NFO薄膜的条件为基片温度800℃,氩氧比1∶1,溅射功率160 W.XRD测试显示,PZT-NFO薄膜为外延生长薄膜,且PZT相与NFO相之间的垂直晶格失配非常小.AFM和SEM结构观察表明,薄膜具有清晰的1-3维纳米复合结构,铁磁相NFO纳米柱直径约为80~150 nm.降低氩氧比有助于NFO相的形成,但溅射功率过大会造成1-3维结构向无规则0-3维结构转变.磁性能测量表明纳米复合薄膜的饱和磁化强度在120~160 kA/m之间,低于块体的NFO相,可能是由于两相的界面扩散所造成.","authors":[{"authorName":"张辉","id":"eba76740-20b5-4767-b5e7-c1b8c5a93305","originalAuthorName":"张辉"},{"authorName":"马永军","id":"b503505e-e075-412e-9ba0-8122cc3551df","originalAuthorName":"马永军"},{"authorName":"王艺程","id":"c7955a34-dc2e-4332-907b-bca20c9db0cf","originalAuthorName":"王艺程"},{"authorName":"文丹丹","id":"318e7501-a4ce-4760-ae10-d08723d03612","originalAuthorName":"文丹丹"},{"authorName":"叶飞","id":"256ff82b-cda6-43fc-979f-a3668297c152","originalAuthorName":"叶飞"},{"authorName":"白飞明","id":"a29fd130-b6f3-4c86-8b89-5e7dfc5488d0","originalAuthorName":"白飞明"}],"doi":"10.3724/SP.J.1077.2013.13363","fpage":"371","id":"286170ce-ff39-41aa-a6ff-ed2fe5b87888","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f2939068-a91b-4b87-922a-f19e8b8e04e2","keyword":"纳米复合","originalKeyword":"纳米复合"},{"id":"8ca0ffef-6b1f-4c42-a282-a39a704653b1","keyword":"磁电效应","originalKeyword":"磁电效应"},{"id":"2efb44c7-9d9a-40b9-9d58-b0f6fe456e8a","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"2759f307-5a42-412e-ac70-0ffdfff427a6","keyword":"自组装","originalKeyword":"自组装"}],"language":"zh","publisherId":"wjclxb201404006","title":"离磁控溅射法生长1-3维PZT-NFO纳米复合薄膜","volume":"29","year":"2014"},{"abstractinfo":"直流磁控溅射是重要的物理气相沉积技术,广泛应用在工业生产和科学研究中.主要评论了近年来直流磁控溅射技术在溅射机理和非平衡闭合磁控靶等方面取得的重要进展,并评述了脉冲磁控模式和基于闭合磁场直流磁控溅射沉积涂层的结构区域模型.直流非平衡磁控溅射是直流磁控溅射技术中的重要里程碑,使磁控溅射技术直接过渡到离子镀阶段,而脉冲磁控溅射技术为稳定沉积高质量的非导电涂层作出了重要的贡献.","authors":[{"authorName":"石永敬","id":"dc65f4d6-59ca-437e-bba3-d5640dbb9d1f","originalAuthorName":"石永敬"},{"authorName":"龙思远","id":"f16c9c4d-fcb9-4094-89b6-88001d0801bb","originalAuthorName":"龙思远"},{"authorName":"王杰","id":"219b090e-30d1-4d03-b3d5-d1674bf91224","originalAuthorName":"王杰"},{"authorName":"潘复生","id":"2dc2b294-5086-45d4-9c28-5b96ac4cd29e","originalAuthorName":"潘复生"}],"doi":"","fpage":"65","id":"30112ccd-bd9e-4752-be6e-a65bf1330bf1","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ff4ee4b3-2146-4a75-ac59-35c256624d29","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"81ea0ce7-c96d-4f35-a11e-b0d9c3b23537","keyword":"非平衡闭合磁场","originalKeyword":"非平衡闭合磁场"},{"id":"284b3235-8247-4cb9-8fcf-be717dd5c69c","keyword":"脉冲","originalKeyword":"脉冲"},{"id":"f7f8b5f4-ae62-4811-a16e-3299abd90143","keyword":"薄膜结构","originalKeyword":"薄膜结构"}],"language":"zh","publisherId":"cldb200801017","title":"直流磁控溅射研究进展","volume":"22","year":"2008"},{"abstractinfo":"主要简介了磁控溅射技术的基本原理、基本装置、近年来出现的新技术(多靶磁控溅射技术、磁场扫描法、非平衡磁控溅射、脉冲磁控溅射技术、磁控溅射技术与其它成膜技术相结合等),以及国内外利用磁控溅射技术在多层膜和化合物薄膜制备方面取得的一些成果.","authors":[{"authorName":"张继成","id":"b73b6d10-c6c7-468a-bd48-b7cffc38ee17","originalAuthorName":"张继成"},{"authorName":"吴卫东","id":"90364d1f-836b-4858-8b37-a45bbb111fb4","originalAuthorName":"吴卫东"},{"authorName":"许华","id":"615b864b-55aa-47b9-826d-2b08239691c5","originalAuthorName":"许华"},{"authorName":"唐晓红","id":"4ea0b65e-4f15-4875-8666-7f7822696c29","originalAuthorName":"唐晓红"}],"doi":"","fpage":"56","id":"d28a5d65-8ca7-42fb-a3d8-9566c679a3e2","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b48b5cb1-16a2-4e57-8485-9261e285a151","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"c21e3b3c-2055-42b9-91a2-52fdef8d5bd9","keyword":"磁控溅射新技术","originalKeyword":"磁控溅射新技术"},{"id":"022dcd84-e16a-4104-9cfc-309df04ec462","keyword":"薄膜制备","originalKeyword":"薄膜制备"}],"language":"zh","publisherId":"cldb200404017","title":"磁控溅射技术新进展及应用","volume":"18","year":"2004"},{"abstractinfo":"利用射频磁控溅射法低温制备铟锡氧化物薄膜,主要研究了氧氩流量比、溅射功率、溅射压强、沉积温度和靶基距等工艺参数对ITO薄膜结构和光电性能的影响.在优化的沉积条件即氧氩流量比0.1/25、溅射功率210W、溅射压强0.2 Pa、靶基距2.0 cm和衬底为100℃的低温下制备的ITO薄膜电阻率为7.3×10-4Ω·cm、可见光范围内平均透光率为89.4%.在氩气气氛中200℃低温退火60 min后,ITO薄膜的电阻率降为3.8 ×10-4Ω·cm,透光率不变.","authors":[{"authorName":"王秀娟","id":"e3cc4225-6416-4708-b190-6ed47109940d","originalAuthorName":"王秀娟"},{"authorName":"司嘉乐","id":"b0de8b01-8124-45e8-8b06-f2619958c4fc","originalAuthorName":"司嘉乐"},{"authorName":"杨德林","id":"3be9356f-5515-4a39-9837-4e7a2f5c22bb","originalAuthorName":"杨德林"},{"authorName":"谷锦华","id":"27cfda2f-bf9c-4df8-a444-b5d610a07702","originalAuthorName":"谷锦华"},{"authorName":"卢景霄","id":"c97e81e9-fed6-405f-bd60-c7d90618eef4","originalAuthorName":"卢景霄"}],"doi":"","fpage":"1516","id":"c86439cc-95fd-457b-b90e-104c03b27177","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"ab8e035e-c73b-40cb-bb75-d211ac905336","keyword":"ITO薄膜","originalKeyword":"ITO薄膜"},{"id":"cd1d89dd-de33-4eb6-8e94-9c50012f9596","keyword":"射频磁控溅射","originalKeyword":"射频磁控溅射"},{"id":"638c2c4f-aeee-4a22-b61d-7adceddb190e","keyword":"电阻率","originalKeyword":"电阻率"}],"language":"zh","publisherId":"rgjtxb98201506017","title":"射频磁控溅射低温制备ITO薄膜","volume":"44","year":"2015"},{"abstractinfo":"采用直流磁控溅射方法在室温下玻璃基板上制备ITO(Indium tin oxide)薄膜,并在真空中不同温度(100℃~400℃)下退火处理.研究了退火对薄膜表面形貌、电光特性的影响.XRD测试发现薄膜在200℃退火后结晶,优选晶向为(222).随退火温度升高,方块电阻迅速下降,表面更加平整,薄膜在可见光范围平均透过率提高到85%.","authors":[{"authorName":"王军","id":"065b088b-306e-432a-9b88-bed0e4fc6b86","originalAuthorName":"王军"},{"authorName":"成建波","id":"b38a7f68-bf37-4419-b1c3-8dd2dac416fa","originalAuthorName":"成建波"},{"authorName":"陈文彬","id":"3eecb2d1-5068-4bd5-912a-2e3b6fa5a0a3","originalAuthorName":"陈文彬"},{"authorName":"杨刚","id":"07e9e1ff-5bba-48fc-899f-c110d5385825","originalAuthorName":"杨刚"},{"authorName":"蒋亚东","id":"d2d2ba66-a243-455b-8ede-957653f84c8e","originalAuthorName":"蒋亚东"},{"authorName":"蒋泉","id":"47cb3072-de3a-4e3a-b457-157b29d7a69a","originalAuthorName":"蒋泉"},{"authorName":"杨健君","id":"8880363a-7d86-407c-86e7-5a45882e5b14","originalAuthorName":"杨健君"}],"doi":"10.3969/j.issn.1005-0299.2008.02.029","fpage":"264","id":"95021558-1111-4b40-8c6a-3a1a21948e4a","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"d0b62bb6-d811-4062-9e45-5c311e20ac7b","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"2c2c3a2b-27be-412d-9f05-45add2362350","keyword":"氧化铟锡(ITO)","originalKeyword":"氧化铟锡(ITO)"},{"id":"5592797e-daf4-4268-ad84-6b9784370b1c","keyword":"退火","originalKeyword":"退火"},{"id":"f91e7bc1-3102-47ec-b72c-075004b614b9","keyword":"直流磁控溅射","originalKeyword":"直流磁控溅射"},{"id":"83b18ee1-01f3-4f40-80f5-be52f679bb11","keyword":"方阻","originalKeyword":"方阻"}],"language":"zh","publisherId":"clkxygy200802029","title":"磁控溅射ITO薄膜的退火处理","volume":"16","year":"2008"},{"abstractinfo":"利用直流磁控溅射法在室温水冷玻璃衬底上制备出了高质量的钛镓共掺杂氧化锌(TGZO)透明导电薄膜.研究了溅射功率对TGZO薄膜结构、形貌和光电性能的影响.研究结果表明:溅射功率对TGZO薄膜的结构和电阻率有重要影响.X射线衍射分析表明,TGZO 薄膜为六角纤锌矿结构的多晶薄膜,且具有c择优取向.在溅射功率为120 W时,实验获得的TGZO薄膜的方块电阻为2.71 Ω/□,此时电阻率具有最小值2.18×10-4 Ω·cm.实验制备的TGZO 薄膜在可见光区范围内平均透过率达到了90%以上.","authors":[{"authorName":"史晓菲","id":"9668c210-abc9-42fb-906d-dd96fb11275a","originalAuthorName":"史晓菲"},{"authorName":"郭美霞","id":"f1c91d8b-89d2-4a0c-9226-76c0a9fb90a6","originalAuthorName":"郭美霞"},{"authorName":"刘汉法","id":"b2ce9071-4058-4d8d-814b-9eac5b4e0e23","originalAuthorName":"刘汉法"},{"authorName":"王新峰","id":"93afd0b9-8a66-497e-9508-01bd90455762","originalAuthorName":"王新峰"}],"doi":"","fpage":"972","id":"5462ad56-cfb3-4bf9-b5d0-0dae2c995364","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"85a5fb0f-a36d-49ba-af5e-ded1cc812ce5","keyword":"TGZO薄膜","originalKeyword":"TGZO薄膜"},{"id":"7f39c53c-e226-4e0f-877a-bc7e4d24740a","keyword":"透明导电薄膜","originalKeyword":"透明导电薄膜"},{"id":"d316257c-2a99-4391-a7b3-f577fea4e7a9","keyword":"溅射功率","originalKeyword":"溅射功率"},{"id":"a0eed295-49c2-4f0f-8961-ff17fea018d3","keyword":"磁控溅射","originalKeyword":"磁控溅射"}],"language":"zh","publisherId":"rgjtxb98201004029","title":"溅射功率对直流磁控溅射法沉积TGZO薄膜性能的影响","volume":"39","year":"2010"},{"abstractinfo":"采用射频磁控溅射工艺,以高密度氧化锌铝陶瓷靶为靶材,衬底温度控制在室温,在玻璃基底上制备了透明导电 ZnO∶Al(ZAO)薄膜.利用 X 射线衍射仪(XRD)、原子力显微镜(AFM)、紫外-可见光谱仪和范德堡法,系统研究了不同溅射功率对薄膜的结构、形貌及光电特性的影响.结果表明,不同溅射功率对薄膜的光透射率影响不大,而对薄膜结晶和电学性能影响较大.XRD 表明薄膜为良好的 c 择优取向;可见光区(400~600 nm)平均透过率达到85%以上;在120 W 下沉积的薄膜电学性能达到了最佳.","authors":[{"authorName":"高立华","id":"a0d6271c-2158-43bc-a76d-a8a7f36a1942","originalAuthorName":"高立华"},{"authorName":"郑玉婴","id":"a3834922-93b9-4a08-acb2-e8ac8d186910","originalAuthorName":"郑玉婴"}],"doi":"10.3969/j.issn.1001-9731.2015.08.006","fpage":"8028","id":"5e0c6be6-d5f3-46ca-b636-a75ce671cf9c","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"259e6d0e-da4e-4289-9dfc-b1ac16ad5cab","keyword":"ZAO 薄膜","originalKeyword":"ZAO 薄膜"},{"id":"acb7d257-db93-4bd6-8ca1-5121e9e673bd","keyword":"溅射功率","originalKeyword":"溅射功率"},{"id":"257be17a-6060-43e3-bb6d-72a868b0c3e8","keyword":"方块电阻","originalKeyword":"方块电阻"},{"id":"63b3c4da-6641-497b-b843-d9e95b1fef55","keyword":"透过率","originalKeyword":"透过率"}],"language":"zh","publisherId":"gncl201508006","title":"溅射功率对磁控溅射ZnO∶Al(ZAO)薄膜性能的影响","volume":"","year":"2015"},{"abstractinfo":"用射频磁控溅射技术,在纯氩气氛中不同溅射功率(120W~210W)下于玻璃衬底上制备了Al掺杂ZnO(ZAO)薄膜.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、光谱仪和四探针测试仪等对所制备的薄膜进行了晶体结构、光学和电学性能分析.结果表明,纯氩气氛中不同溅射功率下玻璃衬底上原位沉积的ZAO薄膜具有明显的c择优取向性,它没有改变ZnO的六角纤锌矿结构;ZAO薄膜的可见光区平均透光率不强烈依赖于溅射功率,为75%左右;原位沉积ZAO薄膜的电阻率达到102Ω·cm数量级范围,随溅射功率由120 W增大到210 W时,薄膜电阻率从132.67 Ω·cm降低到21.08 Ω·cm.","authors":[{"authorName":"汪冬梅","id":"89876889-69e3-4560-ad70-092241a6f38a","originalAuthorName":"汪冬梅"},{"authorName":"周海波","id":"ed956b82-2a6b-4489-bcf3-ec4ac695a991","originalAuthorName":"周海波"},{"authorName":"朱晓勇","id":"50ea40ec-68f7-46cb-a1e7-36cec44de939","originalAuthorName":"朱晓勇"},{"authorName":"吕珺","id":"b7afb692-10d3-4e26-bb59-888dc53237e4","originalAuthorName":"吕珺"},{"authorName":"徐光青","id":"a756bc48-c543-473d-b5f3-fd400ef2c04d","originalAuthorName":"徐光青"},{"authorName":"吴玉程","id":"0c58ff74-954b-4870-9cbf-144899b5e798","originalAuthorName":"吴玉程"},{"authorName":"郑治祥","id":"a3bc8d03-6d03-4aa8-ad55-1c7241d4d579","originalAuthorName":"郑治祥"}],"doi":"","fpage":"57","id":"b69355fc-57a7-463f-a011-d8c5b32cd95f","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"3c2477a5-e261-4b44-a272-1622887769ac","keyword":"ZAO薄膜","originalKeyword":"ZAO薄膜"},{"id":"8c39d37a-dc0e-4795-9c57-b9986d2769e4","keyword":"RF磁控溅射","originalKeyword":"RF磁控溅射"},{"id":"c4025f3f-d00d-4f35-ac5b-b9b6602eac3f","keyword":"结构性能","originalKeyword":"结构性能"},{"id":"3b828860-7f82-4962-95e4-d7b2b2abe45e","keyword":"可见光透过率","originalKeyword":"可见光透过率"},{"id":"1a3d97af-ad09-401e-969b-16e267a29ede","keyword":"电阻率","originalKeyword":"电阻率"}],"language":"zh","publisherId":"jsgncl201003014","title":"溅射功率对射频磁控溅射Al掺杂ZnO(ZAO)薄膜性能的影响","volume":"17","year":"2010"},{"abstractinfo":"纳米硅薄膜具有卓越的光学和电学特性,其在光电器件方面潜在的应用越来越引起人们的兴趣.讨论了用磁控溅射法制备纳米硅薄膜的微观机理及沉积参数对薄膜结构和性能的影响.其中,氢气分压、基片温度、溅射功率是磁控溅射法沉积纳米硅的关键参数,适当的温度、较高的氢气分压和较低的溅射功率有利于纳米硅的生成.","authors":[{"authorName":"刘本锋","id":"a0026f2e-6bad-4f8d-9bc8-42209feac670","originalAuthorName":"刘本锋"},{"authorName":"赵青南","id":"111a97b9-a306-4695-b6b9-85dd275bc9f3","originalAuthorName":"赵青南"},{"authorName":"潘震","id":"00c1557c-f869-4f89-b2e6-826b3ffb0d52","originalAuthorName":"潘震"},{"authorName":"冯敏鸽","id":"1f869581-8168-4da9-94a9-2c6e86dc8aef","originalAuthorName":"冯敏鸽"}],"doi":"","fpage":"30","id":"a57c9eb6-56b3-4f2b-bcbc-2a43ce1aef7c","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3a0e1f42-44a9-43bf-9c05-4dd705978c0e","keyword":"纳米硅","originalKeyword":"纳米硅"},{"id":"561c2939-a0e9-472f-978a-1387aafc265e","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"033437bf-9c39-4e19-9812-6c7bd0494252","keyword":"磁控溅射","originalKeyword":"磁控溅射"}],"language":"zh","publisherId":"cldb200923007","title":"纳米硅薄膜及磁控溅射法沉积","volume":"12","year":"2009"}],"totalpage":911,"totalrecord":9104}