HAp和SiO2的混合粉末压制成型后,在1200℃下烧结得到含5.0%(质量分数)SiO2的HAp/SiO2生物陶瓷复合材料。烧结体的XRD及FT-IR分析结果表明,SiO2的添加促进了HAp发生热分解。其主要物相为α-TCP、HAp、Ca2P2O7以及生物玻璃(bioglass,BG)等。体外生物活性实验结果显示,样品浸泡在模拟体液(SBF)中24h后,表面出现花瓣状磷灰石沉积物,72h后进而生成板状沉积物,120h后在样品表面覆盖了较厚的类骨磷灰石层,经XRD测试分析表明,该层主要为碳酸羟基磷灰石(HCA)。制备的HAp-5.0%(质量分数)SiO2生物陶瓷复合材料具有比纯HAp更加优越的体外生物活性,可期待作为一种新的骨修复材料。
HAp-5wt%SiO2 bioceramic composites were prepared successfully by sintering the powders of hydroxyapatite(HAp) mixed directly with additive of 5.0wt%SiO2 at 1200℃.XRD and FT-IR analyses of the sintered samples demonstrate that the SiO2 additive promotes the thermal decomposition of HAp.The major phase compositions of the HAp/SiO2 composite consist of α-TCP,HAp,Ca2P2O7,bioglass(BG),and etc.The in vitro bioactivity assessments show that the petal-like apatite sediments appear on the surface of the sample after soaking for 24h in stimulated body fluid(SBF),and the plate sediments form as the soaking time is increased to 72h.After further immersing up to 120h,the sample surface is fully covered by a thicker bone-like apatite layer.XRD analyses indicate that the apatite layer is mainly composed of hydroxycarbonate apatite(HCA),which is the major inorganic component of the human bone.As compared with pure HAp,the synthesized HAp-5wt%SiO2 bioceramic composite has a superior in vitro bioactivity,and it can be expected to act as a potential material for bone repair.
参考文献
[1] | Suchanek W.;Yoshimura M. .Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants [Review][J].Journal of Materials Research,1998(1):94-117. |
[2] | Izquierdo Barba-I;Salinas AJ;Vallet Regi-M .In vitro calcium phosphate layer formation on sol-gel glasses of the CaO-SiO(2) system.[J].Journal of biomedical materials research, Part B. Applied biomaterials,1999(2):243-250. |
[3] | 赵莉,林开利,常江.生物活性陶瓷材料表面碳酸羟基磷灰石形成及其微观结构的研究[J].无机材料学报,2003(06):1280-1286. |
[4] | Ducheyne P;Qiu Q .Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function.[J].Biomaterials,1999(23/24):2287-2303. |
[5] | Porter AE;Patel N;Skepper JN;Best SM;Bonfield W .Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface.[J].Biomaterials,2004(16):3303-3314. |
[6] | Gibson IR;Best SM;Bonfield W .Chemical characterization of silicon-substituted hydroxyapatite.[J].Journal of biomedical materials research, Part B. Applied biomaterials,1999(4):422-428. |
[7] | Patel N;Brooks RA;Clarke MT;Lee PMT;Rushton N;Gibson IR;Best SM;Bonfield W .In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model[J].Journal of Materials Science. Materials in Medicine,2005(5):429-440. |
[8] | Reid JW;Pietak A;Sayer M;Dunfield D;Smith TJ .Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system.[J].Biomaterials,2005(16):2887-2897. |
[9] | Sayer M;Stratilatov AD;Reid J;Calderin L;Stott MJ;Yin X;MacKenzie M;Smith TJ;Hendry JA;Langstaff SD .Structure and composition of silicon-stabilized tricalcium phosphate.[J].Biomaterials,2003(3):369-382. |
[10] | Li XW;Yasuda HY;Umakoshi Y .Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200 degrees C: preparation, microstructures and in vitro bone-like layer growth[J].Journal of Materials Science. Materials in Medicine,2006(6):573-581. |
[11] | Langstaff S;Sayer M;Smith TJ;Pugh SM;Hesp SA;Thompson WT .Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization.[J].Biomaterials,1999(18):1727-1741. |
[12] | Li YB.;Degroot K.;Zhang XD. .HYDROLYSIS AND PHASE TRANSITION OF ALPHA-TRICALCIUM PHOSPHATE[J].Biomaterials,1997(10):737-741. |
[13] | 戴红莲,陈芳,闫玉华.α-TCP骨水泥水化产物及其影响因素[J].武汉工业大学学报,1996(01):43-46. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%