欢迎登录材料期刊网

材料期刊网

高级检索

用人工神经网络研究了化学成分及热处理工艺参数对低碳低合金钢的硬度的影响.首先设计了RBF型人工神经网络模型,用“舍一法”改进了模型,使其具有较好的预测性能.然后,用神经网络研究了化学成分和冷速对低碳低合金钢的硬度的定量影响.结果表明,碳的质量分数为0.11%~0.15%时,硬度随碳含量的增加而增大;硅的质量分数为0.24%~0.38%、锰的质量分数为0.94%~1.02%时,硬度值基本不变;铬的质量分数为0~0.6%时,硬度值呈增加趋势;镍的质量分数为0~0.04%时,硬度值基本不变;钼的质量分数为0~0.2%时,硬度值从HV288降至HV282;硼的质量分数为1%~2%时,硬度随含量增加而升高;钛、铌、钒的总质量分数为0.06%~0.14%时,硬度值基本不变;冷速从10℃/m增加至170℃/m,硬度值从HV290增至HV420.

参考文献

[1] 由伟 .人工神经网络预测新型空冷贝氏体钢的CCT图[D].北京:清华大学材料系,2004.
[2] Senuma T;Suehiro M;Yada H .Mathematical Models for Predicting Microstructural Evolution and Mechannical Properties of Hot Strip[J].ISIJ International,1992,32(03):423.
[3] 康大韬;郭成熊.工程用钢的组织转变与性能图册[M].北京:机械工业出版社,1992
[4] Hecht-Nielsen.Neurocomputing[M].Massachussetes:Addison Wesley Publishing Co Inc,1991
[5] Dobrzanski L A;Sitek W.Comparison of Hardenability Calculation Methods of the Heat-Treatable Constructional Steels[J].Journal of Materials Processing Technology,1997(64):117.
[6] Dobrzanski L A;Sitek.W.Application of Neural Network in Modeling of Hardenability of Constructional Steels[J].Journal of Materials Processing Technology,1998(78):59.
[7] LIU Z Y;WANG W D;GAO W.Prediction of the Mechanical Properties of Hot-Rolled C-Mn Steels Using Artificial Neural Networks[J].J Master Proc Tech,1996(57):332.
[8] 牛济泰;孙雷剑;李海涛 .基于人工神经网络的微合金钢热轧奥氏体晶粒尺寸模型的研究[J].材料科学与工艺,1999,7(01):12.
[9] 由伟,白秉哲,方鸿生.钢的连续冷却转变图的神经网络计算模型及预测软件设计[J].金属热处理,2004(07):17-20.
[10] The No.1 Iron Factory,Benxi Iron,Steel Corporation,Tsinghua University.The Atlas of Super-Cooling Austenite Transformation Diagram[M].Benxi:The No.1 Iron Factory Press,Benxi Iron and Steel Corporation,1978
[11] American Society for Metals.Atlas of Isothermal Transformation and Cooling Transformation Diagrams[M].Ohio:American Society for Metals Press,1977
[12] ZHANG S Z.Atlas of Super-Cooling Austennite Transformation Diagrams[M].Beijing:Beijing Metallurgy Industry Press,1993
[13] Japan Society for Irons and Steels.Atlas of CCT of Weiding Steals[M].Tokyo:Japan Society for Irons and Steels Press,1992
[14] Japan Society for Irons and Steels.Atlas of Continous Cooling Transformation Diagrams of Low Carbon Steels[M].Tokyo:Japan Society for Irons and Steels Press,1992
[15] V. NARAYAN .Estimation of Hot Torsion Stress Strain Curves in Iron AlloysUsing a Neural Network Analysis[J].ISIJ International,1999(10):999-1005.
[16] 王炜,吴耿锋,张博锋,王媛.径向基函数(RBF)神经网络及其应用[J].地震,2005(02):19-25.
[17] So Sung-Sau;Martin Karplus .Evolutionnary Optimization in Quantiative Structure-Activity Relationship:An Application of Genetic Neural Networks[J].Journal of Medicinal Chemistry,1996,39(07):1524.
[18] 余宗森.钢的成分、残留元素及其性能的定量关系[M].北京:冶金工业出版社,2001
[19] 崔忠圻;覃耀春.金属学与热处理[M].北京:机械工业出版社,2007
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%