欢迎登录材料期刊网

材料期刊网

高级检索

本文采用瞬态热线法对纳米颗粒TiO2/HFC134a工质的导热系数进行了实验研究.结果表明,相对于HFC134a,纳米颗粒TiO2/HFC134a工质的导热系数增大,提高比例随着颗粒浓度和温度的提高而增大.

参考文献

[1] Choi S U S .Enhancing Thermal Conductivity of Fluids with Nanoparticles[J].ASME Fluids Engineering Division,1995,231(66):99-103.
[2] S. Lee;S. U. -S. Choi;S. Li;J. A. Eastman .Measuring thermal conductivity of fluids containing oxide nanoparticles[J].Journal of heat transfer: Transactions of the ASME,1999(2):280-289.
[3] 李强,宣益民.Convective heat transfer and flow characteristics of Cu-water nanofluid[J].中国科学E辑(英文版),2002(04):408-416.
[4] Sarit K. Das;Nandy Putra;Wilfried Roetzel .Pool boiling characteristics of nano-fluids[J].International Journal of Heat and Mass Transfer,2003(5):851-862.
[5] Wang R X;Hao B;Xie G Z.A Refrigerating Systerm Using HFC134a and Mineral Lubricant Appended with N-TiO2 (R) as Working Fluids[A].北京:清华大学出版社,2003:888-892.
[6] 王凯建,丁国良,姜未汀.纳米尺度传热和工程应用前景[C].制冷空调新技术进展第四届全国制冷空调新技术研讨会论文集,2006:66-75.
[7] 李鹏,吴晓敏,李辉,王维城.制冷剂中添加TiO2纳米颗粒池沸腾换热的实验研究[C].中国工程热物理学会传热传质学学术会议论文集,2006:325-328.
[8] Ki-Jung Park;Dongsoo Jung .Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning[J].Energy and buildings,2007(9):1061-1064.
[9] 雍翰林;毕胜山;史琳.HFC134a/TiO2纳米粒子工质体系应用于冰箱的实验研究[J].化工学报,2006(sl):141-145.
[10] 毕胜山,史琳.纳米颗粒在制冷剂中的分散特性研究[J].工程热物理学报,2007(02):185-188.
[11] K Zhang;J T Wu;Z G Liu .[J].Journal of Chemical and Engineering Data,2006,51:1743-1748.
[12] Maxwell J C.A.Treatise on Electricity and Magnetism[M].Oxford:Oxford University Press,1881:435-441.
[13] Hamilton R L;Crosser O K .Thermal Conductivity of Heterogeneous Two Component Systems[J].I & Ec Fundamentals,1962,1:187-191.
[14] D. Hemanth Kumar;Hrishikesh E. Patel;V. R. Rajeev Kumar;T. Sundararajan;T. Pradeep;Sarit K. Das .Model for Heat Conduction in Nanofluids[J].Physical review letters,2004(14):144301.1-144301.4.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%