为了模拟天然骨组织的结构和成分,以羟基磷灰石(HA)为钙磷源,以壳聚糖(CS)为大分子基质材料,在酸性环境中形成均相溶液,通过Sol-gel相转变矿化方法和陈化处理,原位构建了纳米HA/CS复合多孔支架材料,研究了共沉积时体系的pH值和陈化时间对支架压缩强度、晶相组成及形貌等的影响。结果表明体系pH为10和11时,支架的力学强度远高于未矿化壳聚糖支架强度,但是随着体系pH的升高强度逐渐下降。XRD分析结果表明陈化处理有利于磷酸钙盐向HA转化,随着陈化时间的延长,纳米HA沿c轴择优生长。SEM观察显示支架材料具有相互贯穿的多孔结构,纳米级的短棒状或颗粒状HA晶体颗粒均匀分散在孔壁上,随着陈化处理以及陈化时间的延长,形成致密的纳米无机/有机均匀复合体。这种快速深度矿化方法为骨支架材料的制备提供了新思路。
To mimic the components and structure of the natural bone,chitosan(CS) and hydroxyapatite(HA) were selected as the macromolecule and the source of the calcium phosphate,respectively.The raw materials were dissolved in an acid solvent to form homogeneous solution,and then underwent sol-gel phase transition and aging procedure to prepare nano-HA/CS porous composite scaffolds in situ.The effects of aging time and pH value on the composition,micromorphology and compressive strength of the HA/CS composites were studied.The results show that the compressive strength and modulus of the scaffolds decrease obviously with the increase of the pH value,and the compressive strength is higher than pure CS scaffolds when the pH is 10 and 11.XRD results indicate that the transition of phosphorus calcium to HA can be impelled with the aging treatment,and the growth of HA crystallites orients along the c-axis in the crystal structure.SEM results reveal that the scaffolds possess inter-connected porous structure,and the rod-like or grainy nano-hydroxyapatite crystal particles disperse uniformly in the scaffolds,which formed homogeneous dense organic/inorganic composites.This kind of fast and deep mineralization method for preparation of bone scaffold provides a new way of thinking.
参考文献
[1] | 卢晓英,王秀红,刘治,翁杰.反应pH值对原位水热沉积法制备纳米羟基磷灰石/壳聚糖复合材料的影响[J].复合材料学报,2009,26(4):53-58. |
[2] | 吕彩霞,姚子华.纳米羟基磷灰石/壳聚糖-硫酸软骨素复合材料的制备及其性能研究[J].复合材料学报,2007,24(1):110-115. |
[3] | 黄琼瑜,余厚德,肖秀峰,刘榕芳.羟基磷灰石/聚己内酯-壳聚糖复合材料的制备与表征[J].复合材料学报,2009,26(1):24-30. |
[4] | 肖秀峰,丁晓红,刘淑琼,钟章裕,刘榕芳.壳聚糖/聚己内酯-聚乳酸多孔支架制备和表征[J].复合材料学报,20IO,27(6):100-105. |
[5] | Danilchenko S N, Koropov A V, Sulkio- Cleff B, et al Thermal behavior of biogenic apatite crystals in bone: An X ray diffraction study [J]. Crystal Research and Technol, 2006, 41(3): 268-275. |
[6] | 王海斌,赫淑倩,赵冬梅,孙康宁,刘爱红.羧甲基壳聚糖/纳米羟基磷灰石复合支架材料的制备及生物安全性[J].复合材料学报,2008,25(6):88-92. |
[7] | 陈景帝,王迎军,陈晓峰,尹诗衡.利用冷冻干燥原位构筑仿生型纳米羟基磷灰石、壳聚糖多孔支架材料[J].稀有金属材料与工程,2009,38(增刊3):271-273. |
[8] | 徐挺,何狄,周银银,汪涛.羟基磷灰石/壳聚糖生物复合材料的制备研究进展[J].生物骨科材料与临床研究,2008,5(1):44-48. |
[9] | Crane N J, Popescu V, Morris M D, Steenhuis P, Ignelzi M A, Jr. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization [J]. Bone, 2006, 39(3): 434 -442. |
[10] | Tsu]i T, Onuma K, Yamamoto A, Iijima M, Shiba K. Direct transformation from amorphous to crystalline caleium phosphate facilitated by motif- programmed artificial proteins [J], Proceedings of the National Academy of Science of the United States of America, 2008, 105(44): 16866-16870. |
[11] | 徐挺,何狄,周银银,等.羟基磷灰石/壳聚糖生物复合材料的制备研究进展[J].生物骨科材料与临床研究,2008,5(1):44-48. |
[12] | Chen Fei, Wang Zhoucheng, Lin Changjian. Preparation and characterization of nano- sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials [J]. Materials Letters, 2002, 57(4): 858-861. |
[13] | 李红,朱敏鹰,李立华,周长忍.原位沉析羟基磷灰石-壳聚糖骨组织工程支架材料的研制[J].功能材料,2006,37(6):909-911. |
[14] | Okuyamaa K, Noguchia K, Kanenaria M, Egawa T, Ogawa K. Structural diversity of chitosan and its complexes [J]. Carbohydrate Polymers, 2000, 41(3): 237-247. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%