欢迎登录材料期刊网

材料期刊网

高级检索

综述了复合材料损伤失效的声发射检测研究进展,从损伤源定位及损伤模式的识别与分类两方面进行了介绍.在损伤源定位方面模态声发射相比模式识别更有效,在损伤模式的分类方面模式识别技术更加有效,且人工神经网络及小波神经网络在复合材料声发射方面的研究较多.另外,介绍了模糊模式识别技术用于声发射信号分类及聚类的研究情况,根据复合材料声发射信号复杂重叠性的特点,模糊理论结合模式识别技术可以进一步实现复合材料声发射信号更有效的分析.

参考文献

[1] 李国华;吴淼.现代无损检测评价[M].北京:化学工业出版社,2009
[2] 耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测,2002(01):23-28.
[3] 沈功田,耿荣生,刘时风.声发射信号的参数分析方法[J].无损检测,2002(02):72-77.
[4] 杨明纬.声发射检测[M].北京:机械工业出版社,2005
[5] 沈功田,段庆儒,周裕峰,李帮宪,刘其志,李春树,蒋仕良.压力容器声发射信号人工神经网络模式识别方法的研究[J].无损检测,2001(04):144-146,149.
[6] 顾海贝,刘武刚,孙飞,张凯.基于神经网络算法的复合材料板声发射源定位[J].导弹与航天运载技术,2012(01):49-52.
[7] 邓艾东,赵力,包永强.粒子群优化小波神经网络用于碰摩声发射源定位[J].中国电机工程学报,2009(32):83-87.
[8] W.H. Prosser;K.E. Jackson;S. Kellas;B.T. Smith;J. McKeon;A. Friedman .Advanced Waveform-Based Acoustic Emission Detection of Matrix Cracking in Composites[J].Materials evaluation,1995(9):1052-1058.
[9] Surgeon M;Wevers M .One sensor linear location of acoustic emission events using plate wave theories[J].Materials Science and Engineering,1999,265(1-2):254.
[10] Caprino, G.;Lopresto, V.;Leone, C.;Papa, I. .Acoustic emission source location in unidirectional carbon-fiber-reinforced plastic plates with virtually trained artificial neural networks[J].Journal of Applied Polymer Science,2011(6):3506-3513.
[11] Manindra Kaphle*, Andy C. C. Tan, David P. Thambiratnam, Tommy H. T. Chan .Identification of acoustic emission wave modes for accurate source location in plate-like structures[J].Structural control and health monitoring,2012(2):187-198.
[12] Philippidis T P;Nikolaidis V N .Damage characterization of carbon/carbon laminates using neural network techniques on AE signals[J].NDT E Intema tional,1998,31:329.
[13] Woo SC;Goo NS .Identification of failure mechanisms in a smart composite actuator with a thin sandwiched PZT plate based on waveform and primary frequency analyses[J].Smart Materials & Structures,2007(4):1460-1470.
[14] Gutkin R;Green C J;van Grattanachai S .On acoustic emission for failure investigation in CFRP:Pattern recognition and peak frequency analysis[J].Mech Systems Signal Processing,2011,25(04):1393.
[15] Jahan Taghizadeh;Mehdi Ahmadi Najafabadi .Classification of Acoustic Emission Signals Collected During Tensile Tests on Unidirectional Ultra High Molecular Weight Polypropylene Fiber Reinforced Epoxy Composites Using Principal Component Analysis[J].Russian Journal of Nondestructive Testing,2011(7):491-500.
[16] Sause M G R;Mueller T .Quantification of failure mechanisms in mode-Ⅰ loading of fiber reinforced plastics utilizing acoustic emission analysis[J].Composites Science and Technology,2012,72(02):167.
[17] M.G.R. Sause;A. Gribov;A.R. Unwin;S. Horn .Pattern recognition approach to identify natural clusters of acoustic emission signals[J].Pattern recognition letters,2012(1):17-23.
[18] Refahi O A;Heidary H;Ahmadi M et al.Unsupervised acoustic emission data clustering for the analysis of damage mechanisms in glass/polyester composites[J].Materials & Design,2012,37:416.
[19] 王伟魁,曾周末,杜刚,魏永佳,宋诗哲.304控氮不锈钢应力腐蚀过程中声发射信号聚类分析[J].化工学报,2011(04):1027-1033.
[20] Kaloginnakis G;Quintel-Ier J .Identification of wear mechanisms of glass/ polyester composites by means of acoustic emission[J].Wear,2008,264:235.
[21] V. Kostopoulos;T. H. Loutas;A. Kontsos .On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission[J].NDT & E international: Independent nondestructive testing and evaluation,2003(8):571-580.
[22] G-odin N;Huguet S;Gaertner R .Integration of the Kohonen's self-organising map and k-means algorithm for the segmentation of the AE data collected during tensile tests on cross-ply composites[J].NDT & E International,2005,38(04):299.
[23] Farzad Pashmforoush;Mohamad Fotouhi;Mehdi Ahmadi .Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm[J].Journal of Reinforced Plastics and Composites,2012(10):671-680.
[24] Xu Wang;Hui-Ping Zhang;Xiong Yan .Classification and Identification of Damage Mechanisms in Polyethylene Self-Reinforced Laminates by Acoustic Emission Technique[J].Polymer Composites,2011(6):945-959.
[25] Wang X;Zhang T H;Yan X.Acoustic emission characteristic of damage modes on UHMWPE/LDPE laminates[A].上海,2009
[26] Giridhar D;Vijayaraghavan L;Krishnamurthy R .Acoustic emission response of sintered alumina zirconia composite during grooving process[J].NDT & E International,2012,46:55.
[27] D. D'Addona;R. Teti;G. Caprino .Residual strength prediction of artificially damaged composite laminates based on neural networks[J].Journal of intelligent & fuzzy systems: Applications in Engineering and Technology,2012(5):217-223.
[28] J. Sudha;S. Sampathkumar;R. Kishore Kumar .Condition monitoring of delamination during drilling of GFRP composites using the acoustic emission technique - a neural network model[J].Insight: Non-Destructive Testing and Condition Monitoring,2011(8):445-449.
[29] 刘怀喜,张恒,闫耀辰.人工神经网络在碳/环氧复合材料声发射检测中的应用[J].无损检测,2004(12):628-632.
[30] 殷冬萌,王军,刘云飞.木塑复合材料缺陷及损伤的声发射信号特征分析及神经网络模式识别[J].应用声学,2007(06):352-356.
[31] 苏永振,袁慎芳,张炳良.基于声发射和神经网络的复合材料冲击定位[J].传感器与微系统,2009(09):56-58,61.
[32] 吴超群 .基于小波神经网络的复合材料损伤声发射信号识别方法研究[D].大庆:东北石油大学,2011.
[33] 陈换过 .小波变换和神经网络方法在复合材料结构损伤振动检测中的应用[D].西北工业大学,2003.
[34] 马济美 .FRP复合材料容器损伤声发射特性研究[D].大庆:东北石油大学,2012.
[35] Bhat C;Bhat MR;Murthy CRL .Characterization of failure modes in CFRP composites - An ANN approach[J].Journal of Composite Materials,2008(3):257-276.
[36] 王旭 .基于声发射技术的聚乙烯自增强复合材料损伤模式识别研究[D].东华大学,2010.
[37] V. Arumugam;C. Suresh Kumar;C. Santulli;F. Sarasini;A. Joseph Stanley .Identification of Failure Modes in Composites from Clustered Acoustic Emission Data Using Pattern Recognition and Wavelet Transformation[J].Arabian journal for science and engineering,2013(5):1087-1102.
[38] 李伟,吴超群,王艳茹,王宇,蒋鹏.基于小波神经网络的FRP复合材料损伤声发射信号识别[J].化工机械,2011(03):294-297.
[39] Farzad Pashmforoush;Mohamad Fotouhi;Mehdi Ahmadi .Damage Characterization of Glass/Epoxy Composite Under Three-Point Bending Test Using Acoustic Emission Technique[J].Journal of Materials Engineering and Performance,2012(7):1380-1390.
[40] A. Sibil;N. Godin;M. R'Mili .Optimization of Acoustic Emission Data Clustering by a Genetic Algorithm Method[J].Journal of Nondestructive Evaluation,2012(2):169-180.
[41] Cheng-Chien Kuo .Artificial recognition system for defective types of transformers by acoustic emission[J].Expert Systems with Application,2009(7):10304-10311.
[42] Kuo C C;Huang D S;Heutte L.Particle swarm trained neural network for fault diagnosis of transformers by acoustic emission[A].山东青岛,2007
[43] Fotouhi, M.;Heidary, H.;Ahmadi, M.;Pashmforoush, F. .Characterization of composite materials damage under quasi-static three-point bending test using wavelet and fuzzy C-means clustering[J].Journal of Composite Materials,2012(15):1795-1808.
[44] V. Arumugam;S. Barath Kumar;A. Joseph Stanley .Effect of Fuzzy C Means Technique in Failure Mode Discrimination of Glass/Epoxy Laminates Using Acoustic Emission Monitoring[J].Russian Journal of Nondestructive Testing,2011(12):858-864.
[45] Marec A;Thomas J H .Damage characterization of polymer-based composite materials:Multivariable analysis wavelet transform for clustering acoustic emission data[J].Mech Systems Signal Processing,2008,22(06):1441.
[46] V. Arumugam;C. Suresh Kumar;C.Santulli;F. Sarasini;A. Joseph Stanley .A Global Method for the Identification of Failure Modes in Fiberglass Using Acoustic Emission[J].Journal of Testing and Evaluation: A Multidisciplinary Forum for Applied Sciences and Engineering,2011(5):954-966.
[47] Yefeng Zhou;Kezeng Dong;Huang Zhengliang .Fault Detection Based on Acoustic Emission-Early Agglomeration Recognition System in Fluidized Bed Reactor[J].Industrial & Engineering Chemistry Research,2011(14):8476-8484.
[48] 曹翌佳 .气固反应器中基于声发射信号的故障检测与诊断[D].浙江大学,2010.
[49] 王更峰,张永兴,赵奎.砂岩Kaiser点信号识别特征研究[J].岩土力学,2010(06):1913-1918.
[50] 黄滚 .岩石断裂失稳破坏与冲击地压的分叉和混沌特征研究[D].重庆大学,2007.
[51] 成新民,胡峰,邓艾东,赵力.基于混沌理论的碰摩声发射特征分析与源定位[J].中国机械工程,2011(09):1013-1017.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%