欢迎登录材料期刊网

材料期刊网

高级检索

This paper reported the synthesis, crystal structure and electrical conductivity properties of Ni-doped ZnO powders (i.e. Zn1-xNixO binary system, X=0, 0.0025, 0.005, 0.0075 and in the range 0.01≤X〈0.15). I- phase samples, which were indexed as single phase with a hexagonal (wurtzite) structure in the Zn1-xNixO binary system, were determined by X-ray diffraction (XRD). The widest range of the I-phase was determined as 0≤X≤0.03 at 1200℃; above this range the mixed phase was observed. The impurity phase was determined as NiO when compared with standard XRD data, using the PDF program. We focused on single f-phase ZnO samples which were synthesized at 1200℃ because of the widest range of solubility limit at this temperature. It was observed that the lattice parameters a and c of the I-phase decreased with Ni doping concentration. The morphology of the I-phase samples was analyzed with a scanning electron microscope. The electrical conductivity of the pure ZnO and single I-phase samples were studied by using the four-probe dc method at temperatures between 100 and 950℃ in air atmosphere. The electrical conductivity values of pure ZnO and 3 mol% Ni-doped ZnO samples at 100℃C were 2×10^-6 and 4.8×10^-6 Ω-1.cm^-1, and at 950℃ they were 1.8 and 3.6 Ω-1cm-1, respectively. In other words, electrical conductivity increased with Ni doping concentration.

参考文献

[1] S. J. Pearton;D. P. Norton;K. Ip;Y. W. Heo;T. Steiner .Recent progress in processing and properties of ZnO[J].Superlattices and microstructures,2003(1/2):3-32.
[2] Y. Natsume;H. Sakata .Zinc oxide films prepared by sol-gel spin-coating[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2000(1/2):30-36.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%