中国稀土学报, 2009, 27(1): 156-160.
简化的溶胶凝胶法合成LiMn2-xLaxO4及电性能研究
李翠翠 1, , 陈刚 2,气液接触器制备了纳米CaCO3、SrCO3、Al(OH)3和Al2O3粒子,根据气液反应理论预测了Ca(OH)2浓度、CO2分压等对CO2吸收速率的影响规律,并得到了实验验证,在实验条件下,Ca(OH)2浓度和CO2分压对CaCO3粒子的形貌影响较小,粒径约为70 nm.添加PVP和PEG后,粒度降为48 nm左右,分散性明显提高.所得SrCO3纳米粒子为球形,粒度均匀,Sr(OH)2浓度对粒子粒度具有明显影响.Al(OH)3粒子为球形,50 nm左右,煅烧后得到Al2O3,粒子尺寸增加至70 nm左右.反应后用稀盐酸清洗膜使之再生,膜重复使用9次,膜传质系数未见明显降低.","authors":[{"authorName":"常青","id":"a0cca6b4-d962-40b7-919a-fbd4f788e56e","originalAuthorName":"常青"},{"authorName":"贾志谦","id":"4c943dc0-90d9-41f8-8c15-318383660693","originalAuthorName":"贾志谦"},{"authorName":"秦晋","id":"faf2beeb-d6a5-4e17-b8d3-e2b40aadbada","originalAuthorName":"秦晋"},{"authorName":"阿依努尔·买买提","id":"6b188c00-c54b-488b-9264-ab0cf136817d","originalAuthorName":"阿依努尔·买买提"}],"doi":"10.3969/j.issn.1007-8924.2012.03.016","fpage":"79","id":"5d3ba596-756f-47fb-a9de-feab6a751427","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"6467b496-145b-4219-9b8c-71e32699731d","keyword":"膜接触器","originalKeyword":"膜接触器"},{"id":"9850753d-8772-49c5-af68-ea6090bd7852","keyword":"膜吸收","originalKeyword":"膜吸收"},{"id":"e8f591f9-0a0d-42a0-8c0e-1cdc2dfdfd09","keyword":"气液反应","originalKeyword":"气液反应"},{"id":"cb7357bf-5c97-4dbe-a965-72b12ecc4c9e","keyword":"纳米粒子制备","originalKeyword":"纳米粒子制备"}],"language":"zh","publisherId":"mkxyjs201203016","title":"利用膜气液接触器制备纳米材料的研究","volume":"32","year":"2012"},{"abstractinfo":"微反应器在传质、换热方面具有较明显的优势,可以强化混合和精确控温,还可以大大缩短工艺筛选和工艺放大的周期.本文着重从液相反应、气相反应和气/液反应3个方面对微反应技术在合成中的应用做了较详细的评述,同时也简略介绍了其在光化学和电化学反应中的应用,并概要介绍了微反应技术现阶段存在的问题.","authors":[{"authorName":"何伟","id":"0abfe606-1454-4bd4-a5ef-31b0e11e1c14","originalAuthorName":"何伟"},{"authorName":"方正","id":"e2f12a45-92c4-42b5-b5d3-1c8dddcde6c2","originalAuthorName":"方正"},{"authorName":"陈克涛","id":"55c6355b-af51-4218-aff3-c336d6e88178","originalAuthorName":"陈克涛"},{"authorName":"万志东","id":"44cc01ed-5d19-4095-844f-107de6bf80f1","originalAuthorName":"万志东"},{"authorName":"郭凯","id":"1c3fa576-7698-40e1-a4c9-86b170891f0a","originalAuthorName":"郭凯"}],"doi":"10.3724/SP.J.1095.2013.20617","fpage":"1375","id":"83b8f2d7-d373-4733-bf5c-29d607a1a23c","issue":"12","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"37646174-b18f-4b87-954a-d8ebea2e275b","keyword":"微反应器","originalKeyword":"微反应器"},{"id":"2ba81136-741a-4b71-ba58-db972710cde6","keyword":"传热","originalKeyword":"传热"},{"id":"1cc7d93d-4a85-4634-aa89-b6f1fbe23eab","keyword":"传质","originalKeyword":"传质"},{"id":"49fbe522-56fd-4c21-b70e-cdc3e0aa3cfe","keyword":"液相反应","originalKeyword":"液相反应"},{"id":"cf0fa9ad-da85-46fa-b163-06f62e956184","keyword":"气相反应","originalKeyword":"气相反应"},{"id":"32627fb9-bb0b-49d4-9a9b-247c1106e696","keyword":"气液反应","originalKeyword":"气液反应"}],"language":"zh","publisherId":"yyhx201312001","title":"微反应器在合成化学中的应用","volume":"30","year":"2013"},{"abstractinfo":"用H2S气体分别与反胶束中的CdCl2水溶液和由EDTA络合的CdCl2水溶液反应,制备了单分散程度较高的CdS纳米颗粒,在产物中还发现有少量三角形颗粒,并对其形成机理进行了初步探讨。","authors":[{"authorName":"吴平伟","id":"cad1b18f-705c-4ff4-a80d-3d84f8d5ef6c","originalAuthorName":"吴平伟"},{"authorName":"高濂","id":"41a83be0-16ad-44ea-9264-81d2969be164","originalAuthorName":"高濂"}],"categoryName":"|","doi":"","fpage":"937","id":"c8e37230-c8c6-44a9-98e5-387d01976e59","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"eed1518a-fb45-4953-86c0-c2cafd12568a","keyword":"反胶束","originalKeyword":"反胶束"},{"id":"dc227631-4573-4efe-80f1-b7ca0fa79a92","keyword":" CdS","originalKeyword":" CdS"},{"id":"b0dfd619-a231-47e7-8a0c-5b8862d1670c","keyword":" nanoparticles","originalKeyword":" nanoparticles"},{"id":"6d2b83f9-2204-443a-a009-03b3a5cfe055","keyword":" triangular","originalKeyword":" triangular"}],"language":"zh","publisherId":"1000-324X_2003_4_5","title":"气-液反应反胶束法制备CdS纳米颗粒","volume":"18","year":"2003"},{"abstractinfo":"用H2S气体分别与反胶束中的CdCl2水溶液和由EDTA络合的CdCl2水溶液反应,制备了单分散程度较高的CdS纳米颗粒,在产物中还发现有少量三角形颗粒,并对其形成机理进行了初步探讨.","authors":[{"authorName":"吴平伟","id":"98ca6bc3-90b6-4c2d-a5e2-60edea97e97f","originalAuthorName":"吴平伟"},{"authorName":"高濂","id":"e1e56e47-4386-4d19-be0b-ed5feac73cc1","originalAuthorName":"高濂"}],"doi":"10.3321/j.issn:1000-324X.2003.04.038","fpage":"937","id":"c04f421e-c00a-40bc-80b1-2a8eea9c76e0","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f90b6ff8-9c52-4edd-867d-b90110e220f4","keyword":"反胶束","originalKeyword":"反胶束"},{"id":"87ffc3ad-48d6-4033-b1ef-91361248d0b9","keyword":"CdS","originalKeyword":"CdS"},{"id":"6ee84c42-a085-4bb8-9f12-792165404b37","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"dcdb0ed8-664a-4d6f-9ede-8fb45943a588","keyword":"三角形","originalKeyword":"三角形"}],"language":"zh","publisherId":"wjclxb200304038","title":"气-液反应反胶束法制备CdS纳米颗粒","volume":"18","year":"2003"},{"abstractinfo":"在低于200℃下,以甲醛、甲酸为还原剂用两种不同的方法还原氧化石墨烯(GO):一种是将GO与液态的还原剂反应(液相反应);另一种是将GO与还原剂蒸气反应(气相反应).分别研究了还原剂用量、还原温度和还原时间对还原的氧化石墨烯(rGO)电导率的影响,并通过X-射线衍射,X射线光电子能谱和拉曼光谱对代表性的rGO表征.结果表明:气相反应温度为150℃,而液相反应温度为175℃时rGO的电导率最大.与相对较短的反应时间相比,反应时间延长到24 h时,气相反应得到的rGO的C 1s峰相关的C—C和C—O的峰面积比(Rcc/co)明显下降,而液相反应得到的rGO的Rcc/co略增加.","authors":[{"authorName":"常云珍","id":"75a94a11-d03c-4b14-9b7e-942170643b52","originalAuthorName":"常云珍"},{"authorName":"韩高义","id":"a8dea600-362a-4197-b10a-4ce40a9d3ada","originalAuthorName":"韩高义"},{"authorName":"肖尧明","id":"63936ee2-9dfc-4237-b50e-8b4224efe61e","originalAuthorName":"肖尧明"},{"authorName":"周海涵","id":"6cb54bb9-700f-414d-9d1b-adead8d3011f","originalAuthorName":"周海涵"},{"authorName":"董建华","id":"72b6afb2-4846-4d6c-8f09-2f4eac823308","originalAuthorName":"董建华"}],"doi":"10.1016/S1872-5805(17)60103-3","fpage":"21","id":"609ac6f7-1214-46a2-8bc3-97e1b2361fad","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"b6723d92-3e01-4bc6-acf3-29c83e69239b","keyword":"氧化石墨烯","originalKeyword":"氧化石墨烯"},{"id":"50d12116-cb3e-4650-a882-b8c0b63e5d83","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"2b1eebd5-1b24-49af-998d-3cc78ba1986d","keyword":"甲醛","originalKeyword":"甲醛"},{"id":"53f0cd9c-d10d-47d7-ae6b-d15299dd2bb4","keyword":"甲酸","originalKeyword":"甲酸"}],"language":"zh","publisherId":"xxtcl201701003","title":"还原剂气相反应和液相反应制备石墨烯的比较研究","volume":"32","year":"2017"},{"abstractinfo":"采用气-液反应法合成了纳米级铁粒子,利用TEM、XRD、VSM等仪器对合成产物的晶态、物相、形貌、粒度和磁性进行了表征.结果表明,合成的产物为纳米级α-Fe,且粒子被均匀地包覆了表面活性剂,抗氧化性能明显提高.粒子的平均粒径为17.2nm,饱和磁化强度为113.57A@m2/kg,磁性能相对稳定.","authors":[{"authorName":"曹茂盛","id":"a14c328a-cbc7-4944-b1f6-0b9029bd1e29","originalAuthorName":"曹茂盛"},{"authorName":"刘海涛","id":"dca145c3-ff4b-419b-8b3e-683f3a8a560b","originalAuthorName":"刘海涛"},{"authorName":"陈玉金","id":"def04205-16dd-4e75-aa77-905b60b18fba","originalAuthorName":"陈玉金"},{"authorName":"田秋","id":"a19bf1cd-6daa-433b-af39-c107bc9bbfdb","originalAuthorName":"田秋"},{"authorName":"马文有","id":"bf5f7f82-3d83-4d9d-9d1d-864afb83f4dd","originalAuthorName":"马文有"},{"authorName":"朱静","id":"2becd5eb-8895-44eb-b0fc-f2b4130fd7c8","originalAuthorName":"朱静"}],"doi":"","fpage":"146","id":"7c1b4220-ee79-4882-8221-d3f86b821d1a","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c565064b-64f0-41fd-b306-a3c322e16849","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"e9bbd4b6-a7ab-41eb-98ba-94dba8b9a28e","keyword":"铁粒子","originalKeyword":"铁粒子"},{"id":"528326b1-f8ad-427d-a902-d7d388062d0b","keyword":"气-液反应","originalKeyword":"气-液反应"},{"id":"724d11e3-a8c0-4a51-aad3-af9e778e4f70","keyword":"包覆","originalKeyword":"包覆"}],"language":"zh","publisherId":"gncl200302010","title":"气-液反应法合成包覆型纳米铁粒子","volume":"34","year":"2003"},{"abstractinfo":"亚硫酸盐氧化是湿法烟气脱硫的重要反应过程,本文建立了该反应过程的物理模型,包括氧的相间传质扩散、本征化学反应和亚硫酸根扩散这三个步骤,宏观反应速率由其中最慢的一个步骤来决定,反应分为不同的控制阶段。在双膜理论和质量守恒理论的基础上,建立了稳态单气泡吸收过程的数学模型。在动力学控制阶段,反应速率与气泡的半径呈0阶关系;在扩散控制阶段,反应速率与气泡的半径呈-1阶关系。通过单气泡反应装置进行实验验证,实验结果与模型求解结果一致。","authors":[{"authorName":"赵博","id":"51320350-f722-4c2c-8513-ee661b9ddf1c","originalAuthorName":"赵博"},{"authorName":"曹萌","id":"b8b825f7-9a50-4798-85c9-9a065389e3c9","originalAuthorName":"曹萌"},{"authorName":"冯武军","id":"534e6f1e-580d-4c9e-8b89-a95161251c99","originalAuthorName":"冯武军"},{"authorName":"李彦","id":"0d14d589-ac78-476e-b728-4afb9aec9113","originalAuthorName":"李彦"},{"authorName":"禚玉群","id":"b9955214-9240-42ce-8705-793c81ce4b55","originalAuthorName":"禚玉群"},{"authorName":"陈昌和","id":"62082f2f-f786-4ce8-88e0-c54b69a92478","originalAuthorName":"陈昌和"}],"doi":"","fpage":"1753","id":"e5880349-718a-4ce6-9868-5b04097d55b5","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"56bfdaa8-0aa1-48b5-b2ba-3afca42cce8b","keyword":"传质","originalKeyword":"传质"},{"id":"3d3235b4-c19e-42b9-adea-4a122cb5a1e1","keyword":"反应速率","originalKeyword":"反应速率"},{"id":"2877e08e-e7e4-4346-9050-ffa7ca490ac0","keyword":"扩散","originalKeyword":"扩散"},{"id":"2f92b28f-0428-415d-9990-02d97d2542cc","keyword":"单气泡模型","originalKeyword":"单气泡模型"}],"language":"zh","publisherId":"gcrwlxb201110034","title":"亚硫酸盐氧化气液反应过程模型研究","volume":"32","year":"2011"},{"abstractinfo":"在膜气液接触过程中,气液流速可操作范围宽,结构紧凑,易于放大,不存在液泛、沟流和雾沫夹带等问题,已成为膜科学与技术研究的热点之一.分别介绍了膜气液接触器的结构,气液传质过程中气膜传质阻力、膜阻力和液膜传质阻力的估算以及影响这些阻力的主要因素,膜气液接触过程在气体分离、无泡曝气、饱和烃/不饱和烃分离、废气中VOCs脱除和纳米粒子制备等方面的应用,并对膜气液接触过程的发展方向进行了展望.","authors":[{"authorName":"常青","id":"3672b696-98ff-4c1b-bb6c-0345cee4ff4e","originalAuthorName":"常青"},{"authorName":"贾志谦","id":"995e22e8-d349-4f66-be90-e2e29668e087","originalAuthorName":"贾志谦"},{"authorName":"秦晋","id":"82cfc1c8-867a-40b7-9cf9-5685e31acf6b","originalAuthorName":"秦晋"}],"doi":"10.3969/j.issn.1007-8924.2010.06.020","fpage":"106","id":"8f5cbc24-f247-4ac9-a06d-08ad13af6efe","issue":"6","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"3d4824ae-f74a-4df4-94ab-e176b8305a79","keyword":"膜气液接触器","originalKeyword":"膜气液接触器"},{"id":"9f5a3f7a-1e72-481a-979b-649cfd3e8b5b","keyword":"膜吸收","originalKeyword":"膜吸收"},{"id":"7cb34378-f1f6-4112-827a-9fcc567d1671","keyword":"中空纤维膜","originalKeyword":"中空纤维膜"}],"language":"zh","publisherId":"mkxyjs201006020","title":"膜气液接触过程的研究进展","volume":"30","year":"2010"},{"abstractinfo":"介绍了一种固液反应球磨专利技术,即在一定温度区间,磨球介质直接对熔融金属或合金进行球磨,磨球直接和金属液体反应生成固相的金属间化合物粉末.综合报导了采用Fe、Cu、Ni、Ti等材质的磨球对熔融Sn、Sb、Zn、Al金属及其合金进行固液反应球磨的结果.研究了固液反应球磨工艺,并探讨了固液反应球磨的机理.","authors":[{"authorName":"陈刚","id":"6f28af0b-9ecb-47f1-82a8-f460b0d976a3","originalAuthorName":"陈刚"},{"authorName":"陈鼎","id":"b396aa00-0d7f-4fc1-975a-29529ac216e6","originalAuthorName":"陈鼎"},{"authorName":"严红革","id":"9ee9af33-1f53-4f77-b6be-ae13f729dc92","originalAuthorName":"严红革"},{"authorName":"陈振华","id":"b13b2400-8fa4-48ac-8fd7-979ab398f5d3","originalAuthorName":"陈振华"}],"doi":"","fpage":"222","id":"73d3f289-35ed-4c9f-b961-ed014605a635","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e3e88a43-fe75-4387-9cc6-ce5e8aa9f22c","keyword":"固液反应球磨","originalKeyword":"固液反应球磨"},{"id":"f15bb5b9-0433-4c9f-a5f6-ad2983410d6b","keyword":"机械力化学","originalKeyword":"机械力化学"},{"id":"85478843-a6cc-47c8-8645-2f9f25cd99c7","keyword":"金属间化合物","originalKeyword":"金属间化合物"}],"language":"zh","publisherId":"cldb2005z1072","title":"固液反应球磨工艺","volume":"19","year":"2005"},{"abstractinfo":"采用反相气相色谱法测定了溶剂/PET在不同温度下无限稀溶剂活度系数和Flory-huggins相互作用参数.应用UNIFAC-FV、GK-FV和Elbro-FV模型对溶剂/PET体系中以质量分率表示的无限稀释活度系数进行了估算.结果表明,UNIFAC-FV模型能相对较好地预测溶剂/PET体系中溶剂的无限稀释活度系数.","authors":[{"authorName":"敬波","id":"0c498776-34ea-4b7f-b569-9e55c73aa137","originalAuthorName":"敬波"},{"authorName":"谢建军","id":"231d2aa3-bc04-4013-94d9-dd5ae4196951","originalAuthorName":"谢建军"},{"authorName":"梁吉福","id":"a5cc67ef-b992-43e8-9d76-acd0801828a0","originalAuthorName":"梁吉福"},{"authorName":"刘新容","id":"720c7a9f-a115-4ad8-afe9-863bfe22aab2","originalAuthorName":"刘新容"}],"doi":"","fpage":"171","id":"ddecd6ac-7cdd-43b9-8400-94f09b7b95a5","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"69b60c5d-9c6f-47c4-ad1f-cbf892fc481e","keyword":"聚合物溶液","originalKeyword":"聚合物溶液"},{"id":"5bd44d42-6dc3-4636-a746-a1de3b960509","keyword":"气液平衡","originalKeyword":"气液平衡"},{"id":"a1b26eb0-9723-4ca2-9d9c-bb24e1b8efac","keyword":"反相气相色谱法","originalKeyword":"反相气相色谱法"},{"id":"d647f84a-839d-436b-af5d-eda7e54ae4c8","keyword":"活度系数","originalKeyword":"活度系数"},{"id":"cffbc7c8-3b3d-48e3-82cd-7d3f1cf52ad4","keyword":"Flory-huggins相互作用参数","originalKeyword":"Flory-huggins相互作用参数"},{"id":"8227df4f-459d-45b2-b821-2ed20c6afd3f","keyword":"模拟","originalKeyword":"模拟"}],"language":"zh","publisherId":"gfzclkxygc200505044","title":"溶剂/PET体系气液平衡研究","volume":"21","year":"2005"}],"totalpage":5039,"totalrecord":50382}