{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"液态金属固有的良好导热性能和很好的流动性能,逐渐受到了工程领域越来越多的重视。但由于液相扩散系数的测量困难,目前未见液态纯铁的自扩散系数报道。本文以液态纯铁正则系综为研究对象,采用分子动力学模拟方法对其自扩散系数进行了模拟分析,研究结果表明液态纯铁自扩散系数随温度增加呈现出了较大的变化,应用自扩散系数与温度存在的Arrhenius关系拟合出了液态纯铁的自扩散系数经验公式,进一步获得了液态纯铁原子的平均自由程计算关系式。","authors":[{"authorName":"王增辉","id":"b6a6bca5-39b5-47bc-a63c-4c0e56f87431","originalAuthorName":"王增辉"},{"authorName":"倪明玖","id":"36bca7c6-e8f5-46f6-9964-200124684832","originalAuthorName":"倪明玖"}],"doi":"","fpage":"1403","id":"308826dd-943f-424a-8299-59d536988f06","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3988e752-2568-4985-97c9-047029b371a1","keyword":"液态纯铁","originalKeyword":"液态纯铁"},{"id":"a04a4151-97bd-4939-95af-307cc40df70c","keyword":"自扩散系数","originalKeyword":"自扩散系数"},{"id":"ad4914f5-723f-41fa-9dc4-e562d4634cbe","keyword":"分子动力学","originalKeyword":"分子动力学"}],"language":"zh","publisherId":"gcrwlxb201108038","title":"液态纯铁自扩散系数研究","volume":"32","year":"2011"},{"abstractinfo":"在统计力学理论基础上,本文提出了一个考虑氢键对自扩散系数影响的方程.这个方程为非氢键贡献部分与氢键贡献部分之积,其中自扩散系数的非氢键部分由Lennard-Jones链模型求得,而一个分子中的平均氢键数随温度和密度的变化关系使用统计缔合流体理论得到.链节之间的相互作用能量参数由粘度的关联式获得,其它四个参数则由扩散系数的实验数据获得.对7个典型的缔合流体在相当宽的温度压力范围内计算的平均相对百分误差为5.98%.","authors":[{"authorName":"于养信","id":"155f4557-8aeb-47a9-a47b-2f7d1138ddf9","originalAuthorName":"于养信"},{"authorName":"高光华","id":"f4a2eaa5-9ff4-4194-b48f-3edd28ac858e","originalAuthorName":"高光华"}],"doi":"","fpage":"405","id":"7dad92a0-a323-44cb-bbc5-331df75ad390","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"efd4a7e9-8de2-48f7-b002-265c37dfab4b","keyword":"自扩散系数","originalKeyword":"自扩散系数"},{"id":"0f36651a-855d-4b48-b180-88eb073bf2a2","keyword":"缔合流体","originalKeyword":"缔合流体"},{"id":"2318b174-6264-46ff-a5ec-513b6f8fbf6a","keyword":"Lennard-Jones链模型","originalKeyword":"Lennard-Jones链模型"},{"id":"c47eb29e-0102-4416-8cae-afe03172e13a","keyword":"统计缔合流体理论","originalKeyword":"统计缔合流体理论"}],"language":"zh","publisherId":"gcrwlxb200104003","title":"缔合流体在高温高压下的自扩散系数研究","volume":"22","year":"2001"},{"abstractinfo":"将链式硬球模型流体方程用于计算实际高密度流体的自扩散系数,并与流体的试验数据或模拟数据相比较.使用该方程计算碳链长度在150以下压力在200 MPa以下,平均温度在100 K以上时,非极性自扩散系数的平均绝对偏差多为5%左右.","authors":[{"authorName":"佟庆远","id":"960d8d50-71cc-4824-8186-04f2833ff0c1","originalAuthorName":"佟庆远"},{"authorName":"高光华","id":"0bc0b1bb-b40c-4f0e-adef-04e10c1f81e4","originalAuthorName":"高光华"},{"authorName":"于养信","id":"6da72300-ad25-420d-bc31-d1d69eda3892","originalAuthorName":"于养信"}],"doi":"","fpage":"675","id":"7da689c1-8ee4-467b-a6dc-f4d066db48f3","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1cf27266-c1e3-479b-9d6a-fb8cd9859d1f","keyword":"模型","originalKeyword":"模型"},{"id":"b458a008-b7b6-48b9-bade-f4e680dfe509","keyword":"链式硬球模型方程","originalKeyword":"链式硬球模型方程"},{"id":"c204d132-ee74-4c04-9a33-2013a917f9cf","keyword":"自扩散系数","originalKeyword":"自扩散系数"}],"language":"zh","publisherId":"gcrwlxb200206005","title":"应用链式硬球模型计算流体的自扩散系数","volume":"23","year":"2002"},{"abstractinfo":"提出了一种测量纳米沟道中离子扩散系数的新方法.该方法的原理是:首先测出纳米沟道两端之间溶液电阻的变化,推算出两端离子浓度的变化,然后运用有限扩散理论,计算出纳沟道中离子扩散系数.根据本文的扩散系数测试系统,成功测得一定浓度的KCl溶液在纳沟道中扩散系数.结果表明离子在纳沟道中的扩散系数小于在宏观沟道中的扩散系数的现象.并分析了双电层效应和尺寸效应对纳沟道中离子扩散的影响.","authors":[{"authorName":"肖宝平","id":"d55fad3d-fa8c-4c2c-8497-b81fa04ec157","originalAuthorName":"肖宝平"},{"authorName":"孙艳","id":"5653ac6d-8d0c-4837-a641-9eac811e10a4","originalAuthorName":"孙艳"},{"authorName":"吴昌聚","id":"9665aa32-e45e-478a-b9e2-e899ede03ba8","originalAuthorName":"吴昌聚"},{"authorName":"金仲和","id":"30c99435-b6b0-46e2-8204-cdb3aab77fa5","originalAuthorName":"金仲和"}],"doi":"10.3969/j.issn.1007-4252.2008.02.045","fpage":"486","id":"7f7494d3-a69f-4612-8a21-74a603d83b1f","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"0a6d9c29-c4c1-4a81-bb7b-81a02fc78a45","keyword":"纳流体","originalKeyword":"纳流体"},{"id":"df771873-faf7-46d9-be42-6bdf8b0d8f05","keyword":"纳沟道","originalKeyword":"纳沟道"},{"id":"6bb2f6af-90b0-4265-8e4b-986dc71e01b1","keyword":"液相扩散系数","originalKeyword":"液相扩散系数"}],"language":"zh","publisherId":"gnclyqjxb200802045","title":"纳米沟道中离子扩散系数","volume":"14","year":"2008"},{"abstractinfo":"为获得含碳耐火材料的基础热数据,利用激光脉冲法测试了7种连铸用含碳耐火材料的热扩散系数.结果表明:连铸用含碳耐火材料的热扩散系数随温度的变化呈指数降低,并满足关系式α=B+Aexp(-T/D).含碳耐火材料热扩散系数与材料的组成和结构有关,石墨含量对热扩散系数影响最为显著,材料的热扩散系数随石墨含量的增加而增大;另外含碳耐火材料中氧化物的组成也会影响材料的热扩散系数.","authors":[{"authorName":"宋希文","id":"fa6ed3af-5715-4810-8576-6acd820d6e26","originalAuthorName":"宋希文"},{"authorName":"刘国齐","id":"88932141-e1fb-4a71-a739-8c06a480b358","originalAuthorName":"刘国齐"},{"authorName":"苏有权","id":"2f361dc5-d279-4c5d-a93b-5ad42db8067b","originalAuthorName":"苏有权"},{"authorName":"王峰","id":"f5619f03-52b4-45ac-879f-2404ac853866","originalAuthorName":"王峰"},{"authorName":"安胜利","id":"992e0803-4f8e-4c67-b082-5ccdb90984b1","originalAuthorName":"安胜利"}],"doi":"10.3969/j.issn.1001-1935.2007.06.022","fpage":"473","id":"0f19a4e8-f3b0-468c-acc2-cc152bc4c502","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"449aa382-d4c8-4f06-b603-cf47f182e166","keyword":"含碳耐火材料","originalKeyword":"含碳耐火材料"},{"id":"107b1f68-6464-4666-8227-3536ea2ecda0","keyword":"热扩散系数","originalKeyword":"热扩散系数"},{"id":"ea586879-5e9d-428d-9da3-bb03205a1c3f","keyword":"连铸","originalKeyword":"连铸"}],"language":"zh","publisherId":"nhcl200706022","title":"含碳耐火材料的热扩散系数","volume":"41","year":"2007"},{"abstractinfo":"采用气相渗透法测定了Cr18Ni10Ti奥氏体合金管材的氢扩散系数. 设计了合适的测试装置, 测试温度范围为360 --- 600℃. 分别对内表面涂铝及未涂铝的管材样品进行了中、高温度氢扩散系数测试. 用有限差分方法计算了管材样品氢渗透曲线和氢扩散系数--特征时间曲线, 从而能够处理扩散系数的测试数据. 涂铝管材的室温氢扩散系数为5.789X10 -20 m2/s, 氢扩散激活能为8.144X10 4 J/mol, 分别比未涂铝管材低5---6个数量级和高1倍.","authors":[{"authorName":"刘实","id":"7a792261-212d-40c2-a932-0513ea3ae430","originalAuthorName":"刘实"},{"authorName":"郑华","id":"c7973c65-a2b1-4e5e-b693-7b36d861e6d9","originalAuthorName":"郑华"},{"authorName":"贵全红","id":"1687504c-b3a6-4cd6-b667-5b95ebac8b2d","originalAuthorName":"贵全红"},{"authorName":"马爱华","id":"b8e338e6-42c0-482c-9764-549536f7c5fb","originalAuthorName":"马爱华"},{"authorName":"于洪波","id":"5d431d72-f09d-4315-8047-d9999941f9de","originalAuthorName":"于洪波"},{"authorName":"王隆保","id":"0dcc0c4b-769f-47d5-9115-fd02b961d793","originalAuthorName":"王隆保"}],"categoryName":"|","doi":"","fpage":"393","id":"92fa466e-994a-4d98-ae73-5bb841a70f57","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f32fc3d2-412b-4ebc-9fc2-55ccfaafd6d6","keyword":"氢扩散系数","originalKeyword":"氢扩散系数"},{"id":"a42c6259-8f2f-4eeb-ad95-ee0264b799ff","keyword":"Cr18Ni10Ti","originalKeyword":"Cr18Ni10Ti"},{"id":"a7ca0227-eb94-44f7-96da-7a7ae804aa72","keyword":"tube","originalKeyword":"tube"}],"language":"zh","publisherId":"0412-1961_2004_4_11","title":"管状样品中高温氢扩散系数的测定","volume":"40","year":"2004"},{"abstractinfo":"采用气相渗透法测定了Cr18Ni10Ti奥氏体合金管材的氢扩散系数.设计了合适的测试装置,测试温度范围为360-600℃.分别对内表面涂铝及未涂铝的管材样品进行了中、高温度氢扩散系数测试.用有限差分方法计算了管材样品氢渗透曲线和氢扩散系数-特征时间曲线,从而能够处理扩散系数的测试数据涂铝管材的室温氢扩散系数为5.789×10-20m2/s,氢扩散激活能为8.144×104J/mol,分别比未涂铝管材低5-6个数量级和高1倍.","authors":[{"authorName":"刘实","id":"ef4a985b-1513-4004-aca0-99c1f9266b47","originalAuthorName":"刘实"},{"authorName":"郑华","id":"fd3a8dfc-3647-4255-b6d3-f13c94f72c4e","originalAuthorName":"郑华"},{"authorName":"贵全红","id":"8c6312e6-d04a-4b77-8702-68f86ea85f89","originalAuthorName":"贵全红"},{"authorName":"马爱华","id":"fbc2ba5b-ff01-4cb0-8c72-a0c15a36b9f0","originalAuthorName":"马爱华"},{"authorName":"于洪波","id":"7c45c090-8f4d-4e1f-a813-ef88c32f9ddc","originalAuthorName":"于洪波"},{"authorName":"王隆保","id":"cbb00b6e-9462-4a65-8128-0383fd698a29","originalAuthorName":"王隆保"},{"authorName":"杨洪广","id":"f915d367-1e33-4271-b682-191cd74fef85","originalAuthorName":"杨洪广"}],"doi":"10.3321/j.issn:0412-1961.2004.04.013","fpage":"393","id":"3449b098-bab6-47d0-a80a-1e06c6264c50","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"ad93369f-02d3-4a60-857b-5c306bf46c66","keyword":"氢扩散系数","originalKeyword":"氢扩散系数"},{"id":"fbc3ea47-7c7b-47b1-80f9-5b4f455df476","keyword":"Cr18NNi10Ti","originalKeyword":"Cr18NNi10Ti"},{"id":"ae74962b-c5de-47b7-94cb-17a462ab40f6","keyword":"管材","originalKeyword":"管材"},{"id":"e03e8429-6cd3-4005-a7e4-98199b52f7f9","keyword":"有限差分方法","originalKeyword":"有限差分方法"}],"language":"zh","publisherId":"jsxb200404013","title":"管状样品中高温氢扩散系数的测定","volume":"40","year":"2004"},{"abstractinfo":"本文建立光学实验测试系统,测量了不同温度条件下罗丹明B在不同粒子体积份额的纳米流体(Cu-乙二醇和Cu-水)中的质扩散系数.实验结果表明:罗丹明B在纳米流体中的扩散系数大于其在基液中的扩散系数,且扩散系数随着粒子体积份额的增大而增大;当粒子体积份额一定时,扩散系数随着温度的升高而增大.","authors":[{"authorName":"方晓鹏","id":"bd7e653b-66af-4368-a464-934eaa620b47","originalAuthorName":"方晓鹏"},{"authorName":"宣益民","id":"20c107c5-596c-42b4-8980-4e84687ae8c1","originalAuthorName":"宣益民"},{"authorName":"李强","id":"d3501593-6d9d-4db5-96e2-48cbd37953e8","originalAuthorName":"李强"}],"doi":"","fpage":"277","id":"1c63681b-7cb8-4ef0-b776-023e467065a6","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e9354e01-c67e-4041-92ca-bfe3e0c8d927","keyword":"纳米流体","originalKeyword":"纳米流体"},{"id":"f6d4a5f3-b33d-4965-ba8f-43badfaf29ba","keyword":"传质扩散系数","originalKeyword":"传质扩散系数"},{"id":"5e275e7c-397c-4b47-8ee4-376555c436e6","keyword":"Rhodamine B","originalKeyword":"Rhodamine B"}],"language":"zh","publisherId":"gcrwlxb201102025","title":"纳米流体传质扩散系数的测定","volume":"32","year":"2011"},{"abstractinfo":"本文选用平衡分子动力学模拟方法,应用不同的势能模型对强极性分子水的扩散系数进行了模拟计算.结果表明,用分子动力学模拟方法计算水的扩散系数时,模拟结果对模型的选取极为敏感.在目前应用较为广泛的几种模型中以SPCE模型较为适用,所得的扩散系数与实验值较为接近.","authors":[{"authorName":"刘娟芳","id":"280e5d20-db66-4dd6-b1f2-d1ab18fb5fa9","originalAuthorName":"刘娟芳"},{"authorName":"曾丹苓","id":"811d1bc3-1e0a-4be2-82be-964e4edc4ef5","originalAuthorName":"曾丹苓"},{"authorName":"蔡智勇","id":"f46bd4fb-dc60-4680-8767-740e84d75483","originalAuthorName":"蔡智勇"},{"authorName":"高虹","id":"853b3de0-ac51-4525-9653-9a5676faa595","originalAuthorName":"高虹"}],"doi":"","fpage":"373","id":"93a08a1e-aa22-4a79-bd42-48591ca49712","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a8e8e558-2c51-4aff-9a59-257f00e36726","keyword":"分子动力学模拟方法","originalKeyword":"分子动力学模拟方法"},{"id":"5fbe7dab-4ec7-4688-9c10-6450e3b85554","keyword":"均方位移","originalKeyword":"均方位移"},{"id":"36a97763-a3ae-493e-aa5c-a1fa5b3953df","keyword":"扩散系数","originalKeyword":"扩散系数"},{"id":"b3166658-3590-40c2-a976-bb62d3319605","keyword":"速度相关函数","originalKeyword":"速度相关函数"}],"language":"zh","publisherId":"gcrwlxb200603004","title":"扩散系数的分子动力学模拟","volume":"27","year":"2006"},{"abstractinfo":"借助于圆柱体的一维线性模型,运用Fick第二定律推导出了溶剂和凝固剂扩散系数的表达式,利用KMnO4返滴定法测定出不同凝固时间的初生丝条中溶剂与非溶剂的含量,进而计算出各自的扩散系数;分析了各种凝固参数对溶剂和非溶剂扩散系数的影响规律,结果表明采用温和的凝固条件(高固含量及凝固浴浓度、低浴温及负牵伸率)可降低溶剂和凝固剂的扩散系数,实现均匀缓慢扩散.","authors":[{"authorName":"季保华","id":"8a4ac1b7-337f-4ee4-a4d8-6a4fd95e6e46","originalAuthorName":"季保华"},{"authorName":"王成国","id":"1556f161-4ee0-4d43-b923-fd2fd8182485","originalAuthorName":"王成国"},{"authorName":"王延相","id":"ce218370-a034-4615-bdc5-68c513218c05","originalAuthorName":"王延相"},{"authorName":"朱波","id":"c9f5dafd-52a9-4bfc-9d6f-689946c863df","originalAuthorName":"朱波"}],"doi":"","fpage":"1030","id":"f65e8d6d-6660-4f3c-b195-18ba3ca16a34","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"138dac14-d6af-478d-bed1-3cd9df5d1b41","keyword":"初生纤维","originalKeyword":"初生纤维"},{"id":"92fab49f-e569-4d49-97c9-e7eaea86b71d","keyword":"返滴定法","originalKeyword":"返滴定法"},{"id":"35a84308-ddaf-4a8e-beac-d74ade3ece65","keyword":"扩散系数","originalKeyword":"扩散系数"},{"id":"7ff118fc-2018-4b7c-81e8-d33edd7c4a67","keyword":"凝固条件","originalKeyword":"凝固条件"}],"language":"zh","publisherId":"gncl200706051","title":"PAN初生纤维凝固成形扩散系数的研究","volume":"38","year":"2007"}],"totalpage":1750,"totalrecord":17500}