欢迎登录材料期刊网

材料期刊网

高级检索

In this paper, the five-layer modulated (5M) martensitic structures of Ni(2)Mn(Al(x)Ga(1-x)), with x = 0, 0.1 and 0.2, are investigated by the use of the exact muffin-tin orbital method in combination with the coherent potential approximation. The 5M martensite is modeled by varying c/a (shear) and wave-like displacements of the atoms on (1 1 0) plane (shuffle) scaled by eta according to Martynov and Kokorin (J. Phys. III 2, 739 (1992)). For Ni(2)MnGa, we obtain 5M martensite with equilibrium c/a of 0.92 and eta of 0.08, in reasonable agreement with the experiment results (0.94 and 0.06, respectively). c/a and eta are linearly coupled to each other. Al-doping increases c/a and decreases eta, but the linear c/a similar to eta coupling remains. Comparing the total energies of the 5M martensite and L2(1) austenite, we find that the martensite is more stable than the austenite. Al-doping increases the relative stability of the austenite and finally becomes energetically degenerated with the 5M martensite at an Al atomic fraction (x) of about 0.26. The relative phase stability is analyzed based on the calculated density of states. The calculated total magnetic moments mu(0) as a function of c/a exhibit a maximum around the equilibrium c/a. Al-doping reduces mu(0) (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%