欢迎登录材料期刊网

材料期刊网

高级检索

采用浆料浸渗结合液硅渗透法原位生成高韧性Ti3SiC2基体,制备Ti3SiC2改性C/C—SiC复合材料。研究了TiC颗粒的引入对熔融Si浸渗效果的影响,分析了Ti3SiC2改性C/C-SiC复合材料的微结构和力学性能。实验结果表明:TiC与熔融si反应生成Ti3SiC2是可行的,而且c的存在更有利于生成Ti3SiC2;在含TiC颗粒的C/C预制体孔隙(平均孔径22.3μm)内,熔融si的渗透深度1min内可达10.8cm;Ti3SiC2取代残余Si后提高了C/C-SiC复合材料的力学性能,C/C-SiC-Ti3SiC2复合材料的弯曲强度达203MPa,断裂韧性达到8.8MPa·m^[1/2];对于厚度为20rllm的试样,不同渗透深度处材料均具有相近的相成分、密度和力学性能,无明显微结构梯度存在,表明所采用的浆料浸渗结合液硅渗透工艺适用于制备厚壁Ti3SiC2改性C/C-SiC复合材料构件。

In the paper, the high toughness matrix Ti3SiC2 was in-situ formed by the joint process of slurry infiltration and liquid silicon infiltration, and Ti3 SiC2 modified C/C-SiC composites were obtained. The effect of introduction of TiC particle on the infiltration of molten silicon were studied, and the microstructure and mechanical properties of C/C-SiC-Ti3 SiC2 composites were analysed. The results show Ti3 SiC2 can be formed by the reaction of TiC with liquid silicon during liquid silicon infiltration, and the existence of carbon is beneficial to the formation of TigSiC2. The infiltration depth of molten silicon in the micropore (mean size 22.3μm) can reach to 10.8 cm in one minute. The in- situ formed Ti3SiC2 replaces the residue silicon and improves both the flexural strength and the fracture toughness of C/C-SiC-Ti3SiC2 composites, which reach to 203 MPa and 8.8 MPaμm1/2 , respectively. For C/C-SiC-Ti3SiC2 composites with the depth of 20 mm, the materials with different infiltration depths displays similar phase composition, density and mechanical properties, and no obvious microstructure gradient exist, which indicate the joint process of slurry infiltration and liquid silicon infiltration can be used to fabricate the thick- wall components.

参考文献

[1] Krenkel W,Berndt F.C/C-SiC composites for spaceapplications and advanced friction systems[J].Materials Science and Engineering A,2005,412(1/2):177-181.
[2] Krenkel W,Hausherr J M,Reimer T,FrieβM.Design,manufacture and quality assurance of C/C-SiC composites forspace transportation systems[J].Ceramic Engineering andScience Proceedings,2004,25(4):49-58.
[3] Krenkel W.C/C-SiC composites for hot structures andadvanced friction systems[J].Ceramic Engineering andScience Proceedings,2003,24(4):583-592.
[4] 张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(4):1-6.
[5] 田广来,徐永东,范尚武,张立同,柯少昌,成来飞,刘海平.高性能C/SiC刹车材料及其优化设计[J].复合材料学报,2008,25(4):101-108.
[6] Wiederhorn S M,Chuck L,Fuller E R,Jr,Tighe N J.Creeprupture of siliconized silicon carbide[C]∥Tressler R E,Messing G L,Pantano C G,Newnham R E.TailoringMultiphase and Composite Ceramics.New York:PlenumPublishing Corp,1986:755-773.
[7] Fan Shangwu,Zhang Litong,Xu Yongdong,Cheng Laifei,Lou Jianjun,Zhang Junzhan,Yu Lin.Microstructure andproperties of 3Dneedled-punched carbon/silicon carbide brakematerials[J].Composites Science and Technology,2007,67(11/12):2390-2398.
[8] Cai Yanzhi,Xu Yongdong,Li Bin,Fan Shangwu,Zhang Litong,Cheng Laifei,Dong Benxing,Jiang Juan.Microstructures and mechanical properties of a low-cost three-dimensional needled carbon/silicon carbide composite[J].Materials Science and Engineering A,2008,497(1/2):278-282.
[9] Cai Yanzhi,Fan Shangwu,Liu Heyi,Zhang Litong,Cheng Laifei,Jiang Juan,Dong Benxing.Mechanical properties of a3Dneedled C/SiC composite with graphite filler[J].MaterialsScience and Engineering A,2010,527(3):539-543.
[10] Mühlratzer A.Production,properties and applications of ceramic matrix composites[J].C/Fiber DKG,1999,76(4):30-35.
[11] Singh M,Behrendt D R.Reactive melt infiltration of silicon-niobum alloys into microporous carbons[J].Journal ofMaterials Research,1994,9(7):1701-1708.
[12] Barsoum M W.The MN+1AXNphases:A new class of solids--thermodynamically stable nanolaminates[J].Progress inSolid State Chemistry,2000,28(1-4):201-281.
[13] Barsoum M W,El-Raghy T.Synthesis and characterization ofa remarkable ceramic:Ti3SiC2[J].Journal of the American Ceramic Society,1996,79(7):1953-1956.
[14] Barsoum M W,El-Raghy T.The MAX phases:Unique newcarbide and nitride materials[J].American Scientist,2001,89(4):334-343.
[15] Barsoum M W,Radovic M.Mechanical properties of the MAX phases[M]∥Buschow K H J,Cahn R W,Flemings MC,Kramer E J,Mahajan S,Veyssiere P.Encyclopedia Materials:Science Technology.Amsterdam:Elsevier,2004:1-16.
[16] Gilbert C J,Bloyer D R,Barsoum M W,El-Raghy T,Tomsia A P,Ritchie R O.Fatigue-crack growth and fractureproperties of coarse and fine-grained Ti3SiC2[J].ScriptaMaterialia,2000,42(8):761-767.
[17] Tong Changqing,Cheng Laifei,Yin Xiaowei,Zhang Litong,Xu Yongdong.Oxidation behavior of 2D C/SiC compositemodified by SiB4 particles in inter-bundle pores[J].Composites Science and Technology,2008,68(3/4):602-607.
[18] Zhu Yunzhou,Huang Zhengren,Dong Shaoming,YuanMing,Jiang Dongliang.Manufacturing 2D carbon-fiber-reinforced SiC matrix composites by slurry infiltration and PIPprocess[J].Ceramics International,2008,34(5):1201-1205.
[19] Brennan J J.Interfacial characterization of a slurry-cast melt-infiltrated SiC/SiC ceramic-matrix composite[J].Acta Materialia,2000,48(18/19):4619-4628.
[20] Katipelli Lalitha R,Agarwal Arvind,Dahotre Narendra B.Laser surface engineered TiC coating on 6061 Al alloy:Microstructure and wear[J].Applied Surface Science,2000,153(2/3):65-78.
[21] Dezellus O,Jacques S,Hodaj F,Eustathopoulos N.Wettingand infiltration of carbon by liquid silicon[J].Journal ofMaterials Science,2005,40(9/10):2307-2311.
[22] Yin Xiaowei,Travitzky Nahum,Melcher Reinhold,GreilPeter.Three-dimensional printing of TiAl3/Al2O3composites[J].International Journal of Materials Research,2006,97(5):492-498.
[23] Sasaki Hitoshi,Tokizaki Eiji,Huang Xinming,TerashimaKazutaka,Kimura Shigeyuki.Temperature dependence of theviscosity of molten silicon measured by the oscillating cupmethod[J].Japanese Journal of Applied Physics,1995,34(7):3432-3436.
[24] Nakanishi Hideo,Nakazato Kenichi,Terashima Kazutaka.Surface tension variation of molten silicon measured by ringtensiometry technique and related temperature and impuritydependence[J].Japanese Journal of Applied Physics,2000,39(12):6487-6492.
[25] Lapin J,Tiberghien D,Delannay F.On the parametersaffecting the formation of iron aluminides during pressure-assisted infiltration of aluminium into a preform of steel fibres[J].Intermetallics,2000,8(12):1429-1438.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%