欢迎登录材料期刊网

材料期刊网

高级检索

疏水表面纳米气泡的运动有重要的应用价值和研究意义。本文采用分子动力学方法,模拟了纳米通道壁面为超疏水性时壁面上气泡的运动状况。在质量力驱动下,随着外界驱动力的增大,两壁面上的气泡被逐渐拉长,同时逐渐变得扁平;前端“接触角”逐渐增大,而后端“接触角”逐渐减小。纳米通道内疏水性表面的纳米气泡随着外部驱动力的变化呈现出不同的形态,变化程度随着驱动力的增大而增大。在不同驱动力作用下,两个气泡总是保持相同的速度,气泡的速度与外力驱动的大小呈线性增长趋势。随着外力的增大,边界层及通道中心速度皆呈现增大趋势。

The movement of the hydrophobic surface nanobubbles has important application value and research significance. Molecular dynamics method was adopted to simulate the movement of bubbles in the nanochannel with the super-hydrophobic surface. With the increase of the external driving force, the bubbles on the two surfaces are gradually elongated, and gradually become flat; front-end "contact angle" is gradually increasing, while the back-end contact angle decreases gradually. Different forms of nanobubbles in nanochannel with super-hydrophobic surface presented with the changes of the external driving force, the degree of change increases with the increase of the driving force. The two bubbles always maintain the same speed under different driving forces. The bubble velocity increases linearly with the driving force. With the external force increasing, the velocity of the boundary layer and channel centers are showing increasing trend.

参考文献

[1] 徐超,何雅玲,王勇.纳米通道滑移流动的分子动力学模拟研究[J].工程热物理学报,2005(06):912-914.
[2] Gyoko Nagayama;Takaharu Tsuruta;Ping Cheng .Molecular dynamics simulation on bubble formation in a nanochannel[J].International Journal of Heat and Mass Transfer,2006(23/24):4437-4443.
[3] 张立娟,陈浩,李朝霞,方海平,胡钧.纳米气泡的长寿源于其高的内部密度[J].中国科学G辑,2007(04):556-560.
[4] Agrawal A;Park J;Ryu DY;Hammond PT;Russell TP;McKinley GH .Controlling the location and spatial extent of nanobubbles using hydrophobically nanopatterned surfaces[J].Nano letters,2005(9):1751-1756.
[5] Roth R;Gillespie D;Nonner W;Eisenberg RE .Bubbles, gating, and anesthetics in ion channels.[J].Biophysical Journal,2008(11):4282-4298.
[6] Gao Z;Kennedy AM;Christensen DA;Rapoport NY .Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy[J].Ultrasonics,2008(4):260-270.
[7] 解辉,刘朝.纳米通道内表面浸润性对气泡的作用[J].物理化学学报,2009(12):2537-2542.
[8] Xie, H.;Liu, C. .Effects of hydrophobic surface nanobubbles on the flow in nanochannels[J].Modern Physics Letters, B. Condensed Matter Physics, Statistical Physics, Applied Physics,2011(10):773-780.
[9] 曹炳阳,陈民,过增元.纳米结构表面浸润性质的分子动力学研究[J].高等学校化学学报,2005(02):277-280.
[10] Thompson PA. Troian SM. .A GENERAL BOUNDARY CONDITION FOR LIQUID FLOW AT SOLID SURFACES[J].Nature,1997(6649):360-362.
[11] Cosgrove JA.;Buick JM.;Tonge SJ.;Munro CG.;Greated CA.;Campbell DM. .Application of the lattice Boltzmann method to transition in oscillatory channel flow[J].Journal of Physics.A.Mathematical and General:A Europhysics Journal,2003(10):2609-2620.
[12] WANG Xiaodong,TIAN Yong,PENG Xiaofeng.Self-aggregation of vapor-liquid phase transition[J].自然科学进展(英文版),2003(06):451-456.
[13] 解辉,刘朝,刘彬武.纳米通道内混合气体流动的分子动力学模拟[J].物理化学学报,2009(05):994-998.
[14] 解辉,刘朝,高虹.温度和分子间作用对切向动量协调系数的耦合效应[J].工程热物理学报,2010(02):205-208.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%