欢迎登录材料期刊网

材料期刊网

高级检索

本文采用基于待定函数的系统反推法首次成功地导出了二维非定常粘性流动Navier-Stokes方程的精确变分原理,并进而应用轮转变换导出其对偶变分原理,从而为粘流,特别是湍流的直接数值模拟(通过有限元法或变分差分解法等)或求近似解析解奠定了重要的和严密的理论基础.

参考文献

[1] Finlayson B A.The Method of Weighted Residuals and Variational Principles(VP)[M].New York:Academic Press,Inc,1972
[2] Finlayson B A .[J].Physics of Fluids,1972,15:963-967.
[3] Kardestuncer H;Norrie D H.Finite Element Handbook.Part Ⅱ[M].New York:McGraw-Hill,1987
[4] Serrin J.Mathematical Principles of Classical Fluid Mechanics[A].Beilin:Springer-Verlag,1959
[5] Zienkiewicz O C;Taylor R L.The Finite Element Method[M].Butterworth & Heinemann,Oxford,2000
[6] Atherton R W;Homsy G M .On the Existence and Formulation of VP for Nonlinear Differential Equations[J].Studies in Applied Mathematics,1975,5:31-60.
[7] Ecer A .Variational Formulation of Viscous Flows[J].International Journal for Numerical Methods in Engineering,1980,15:1355-1361.
[8] Sciubba E .Flow Exergy as a Lagrangian for the N-S Equations for Incompressible Flow[J].Int J Thermodynamics,2004,7(03):115-112.
[9] Liu G L .Deriation and Transformation of VP with Emphasis on Inverse and Hybrid Problems in Fluid Mechanics:A Systematic Approach[J].Acta Methanica,2000,140:73-89.
[10] Liu G L.Method of Undetermined Function for Systematic Search for VP in Mathematical Physics,(Keynote Lecture)[A].上海,2003:K3-K5.
[11] Courant R;Hibert D.Methods of Math.Phys[M].Interscience,1953
[12] Liu G L.The First Exact Variational Formulation of 3-D N-S Equations[A].北京:清华大学;Springer出版社,2004:438-443.
[13] Liu G L.Dual Variational Principles for 3-D N-S Equations[A].上海:上海大学出版社:1014-1019.
[14] 刘高联.非定常三维流动N-S方程的精确变分原理族[A].北京,2005
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%