分析了世界各国高性能炭纤维评价表征研究现状,简要总结了中国高性能炭纤维评价表征的进展和存在的问题。介绍了航天领域对炭纤维“指纹”性指标、特征性指标、本征性指标、离散性指标和工艺性指标的评价要求。展望了中国高性能炭纤维评价表征研究发展方向。
Major advancements in the evaluation of carbon fibers at home and aboard are briefly summarized in this paper. In ad-dition, the requirements on microstructure, composition, surface elements, ash, processing and stability of carbon fibers used in the aerospace field are introduced. Future trends for the evaluation of aerospace carbon fibers are discussed.
参考文献
[1] | 郭玉明,冯志海,王金明.高性能PAN基碳纤维及其复合材料在航天领域的应用[J].高科技纤维与应用,2007(05):1-7,17. |
[2] | 冯志海.关于我国高性能碳纤维需求和发展的几点想法[J].新材料产业,2010(09):19-24. |
[3] | 贺福.炭纤维及其应用技术[M].北京:化学工业出版社,2004:9. |
[4] | 李敏,张佐光,孙志杰,罗慧珍.炭纤维的环氧树脂浸润特性[J].新型炭材料,2006(01):75-80. |
[5] | Mangalgiri P D .Composite for aerospace applications[J].Bul-letin of Materials Science,1999,22:657-664. |
[6] | 赵渠森;郭恩明.先进复合材料手册[M].北京:机械工业出版社,2003:1540-1551. |
[7] | 黎小平,张小平,王红伟.碳纤维的发展及其应用现状[J].高科技纤维与应用,2005(05):24-30,40. |
[8] | 尤志魏,朱爱钧,潘裕新,秦杰.碳纤维复合芯(ACCC)导线在上海电网应用分析[J].华东电力,2009(08):1292-1295. |
[9] | 胡兴军.碳纤维在汽车上的应用[J].天津汽车,2008(12):52-53. |
[10] | Paris O;Loidl D;Peterlik H .Texture of PAN-and Pith-based carbon fibers[J].CARBON,2002,40:551-555. |
[11] | Natio K;Tanaka Y;YANG J M et al.Flexural properties of PAN-and Pitch-based fibers[J].Journal of the American Ceramic Society,2009,92:186-192. |
[12] | Li, W.;Long, D.;Miyawaki, J.;Qiao, W.;Ling, L.;Mochida, I.;Yoon, S.-H. .Structural features of polyacrylonitrile-based carbon fibers[J].Journal of Materials Science,2012(2):919-928. |
[13] | Bennett S C;Johnson D J;Johnson W .Strength-structure rela-tionship in PAN-based carbon fibres[J].Journal of Materials Science,1983,18:3337-3347. |
[14] | Johson D J;Crawford D;Jones B F .Observation of a three-phase structurre in high-modulus PAN-based carbon fibres[J].Journal of Materials Science,1973,8:286-290. |
[15] | Katzman H A;Adams P M;Le T D et al.Characterization of low thermal conductivity PAN-based carbon fibers[J].CARBON,1994,32:379-391. |
[16] | Prasanna K I;Preetamkumar M M;Sudhir K .Axial tensile tes-ting of single fibre[J].Modern Mechanical Engineering,2012,2:151-156. |
[17] | Naito K;Tanaka Y;Yang JM;Kayawa Y .Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers[J].Carbon: An International Journal Sponsored by the American Carbon Society,2008(2):189-195. |
[18] | Sugimoto Y;Shioya M;Yamamoto K et al.Relationship be-tween axial compression strength and longitudinal microvoid size for PAN-based caron fibers[J].CARBON,2012,50:2860-2869. |
[19] | Takaku A;Shioya M .Characterization of microvoids in polyac-rylonitrile-based carbon fibres[J].Journal of Materials Sci-ence,1986,21:4443-4450. |
[20] | Paiva MC.;Nardin M.;Bernardo CA. .Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres[J].Carbon: An International Journal Sponsored by the American Carbon Society,2000(9):1323-1337. |
[21] | 郭慧,黄玉东,刘丽,王磊.T300和国产碳纤维本体的力学性能对比及其分析[J].宇航学报,2009(05):2068-2072. |
[22] | 张为芹,田艳红.高强碳纤维束丝拉伸性能测试影响因素的研究[J].理化检验-物理分册,2006(11):541-543,553. |
[23] | 王俊山,李仲平,敖明,许正辉,刘朗,胡子君,彭维周.掺杂难熔金属碳化物对炭/炭复合材料烧蚀机理的影响[J].新型炭材料,2006(01):9-13. |
[24] | GB3362-2005.炭纤维复丝拉伸性能试验方法[S]. |
[25] | GJB 1984-92.三向织物用炭纤维长丝束规范[S]. |
[26] | GB/T 3364-82.炭纤维直径和当量能检验方法(显微镜法)[S]. |
[27] | 于翘.材料工艺(下)[M].北京:宇航出版社,2005:70-75. |
[28] | 冯志海,李同起,杨云华,杨晓光,李秀涛,徐樑华,吕春祥.碳纤维在高温下的结构、性能演变研究[J].中国材料进展,2012(08):7-14,32. |
[29] | 李仲平.防热复合材料发展与展望[J].复合材料学报,2011(02):1-9. |
[30] | Yu WD;Yao JW .Tensile strength and its variation of PAN-based carbon fibers. I. Statistical distribution and volume dependence[J].Journal of Applied Polymer Science,2006(5):3175-3182. |
[31] | Yao JW;Yu WD .Tensile strength and its variation for PAN-based carbon fibers. II. Calibration of the variation from testing[J].Journal of Applied Polymer Science,2007(4):2625-2632. |
[32] | Yao JW;Yu WD;Pan D .Tensile Strength and Its Variation of PAN-Based Carbon Fibers. III. Weak-Link Analysis[J].Journal of Applied Polymer Science,2008(6):3778-3784. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%