基于Leonov本构模型,建立了与悬浮纤维取向描述相耦合的纤维悬浮聚合物熔体的数学模型.该模型包括在热力学基础上建立的描述非等温聚合物熔体性质的Leonov本构模型、增强纤维尺度上表征悬浮纤维的纤维取向模型和对宏观流场进行描述的守恒方程组.文中使用该数学模型对纤维悬浮聚合物熔体在4:1平板收缩腔中的流动进行了数值模拟,并对增强纤维产生的应力分布和热力学Leonov本构模型中的应力结果进行了分析.数值结果表明,对于纤维增强聚合物复合材料成型过程的数值模拟,基于Leonov本构模型而建立的纤维悬浮聚合物熔体的数学模型合理有效.
Based on the coupling of Leonov constitutive model and tensor description of fiber orientation, a mathematical model of polymeric flow with fiber suspensions was presented.The Leonov constitutive model of non-isothermal polymeric flow on non-equilibrium thermodynamic scale, the fiber orientation tensor model of reinforced fibers and conservation equations of flow field on rheological scale are included in the mathematical model.The 4:1 planar contraction flow of viscoelastic polymeric flow with fiber suspensions was simulated using the mathematical model.The distributions of both normal stress difference and shear stress in polymeric flow with fiber suspensions were analyzed.The results show the validity and rationality of the mathematical model for predicting mechanics performance of polymeric flow with fiber suspensions.
参考文献
[1] | 梁志明,周持兴,俞炜,王刚,温绍国.聚合物熔体的非等温平板收缩流动的数值模拟[J].高分子材料科学与工程,2003(01):15-19. |
[2] | Marco Dressler;Brian J. Edwards;Hans Christian Ottinger .Macroscopic Thermodynamics of Flowing Polymeric Liquids[J].Rheologica Acta: An International Journal of Rheology,1999(2):117-136. |
[3] | 魏永强,陈静波,何领好,申长雨.Leonov粘弹本构模型及其参数的确定方法[J].高分子材料科学与工程,2005(04):18-22. |
[4] | Mahesh Gupta;C. A. Hieber;K. K. Wang .VISCOELASTIC MODELLING OF ENTRANCE FLOW USING MULTIMODE LEONOV MODEL[J].International Journal for Numerical Methods in Fluids,1997(5):493-517. |
[5] | 张红平,欧阳洁,张玲,郑素佩.聚合物熔体双尺度模型和SIMPLER方法在收缩流中的应用[J].高分子材料科学与工程,2007(04):15-19. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%