欢迎登录材料期刊网

材料期刊网

高级检索

利用分子束外延(MBE)技术在GaAs(001)衬底上生长了GaN0.01As0.99薄膜,然后使用光调制反射(PR)光谱研究了薄膜的光学性质和能带结构.PR光谱实验表明GaN0.01As0.99/GaAs薄膜价带在Γ点发生轻、重空穴分裂,且分裂的轻、重空穴带到导带边的2个跃迁峰随着温度的升高均发生红移.采用Varshni法则、Bose-Einstein关系和BAC模型分别对轻、重空穴的能隙分裂和红移特征进行了拟合.分析结果表明,随着温度的升高,GaNAs外延层与GaAs衬底间晶格失配的减少可能是导致应变能和价带分裂能量减少的主要因素.

参考文献

[1] Egorov AY;Kalevich VK;Afanasiev MM;Shiryaev AY;Ustinov VM;Ikezawa M;Masumoto Y .Determination of strain-induced valence-band splitting in GaAsN thin films from circularly polarized photoluminescence - art. no. 013539[J].Journal of Applied Physics,2005(1):13539-0.
[2] Liu ZL;Chen PP;Wang C;Li TX;Cui HY;Li YJ;Chen XS;Lu W .Effects of rapid thermal annealing on the properties of GaNxAs1-x[J].Journal of Applied Physics,2007(11):13514-1-13514-5-0.
[3] Perkins JD.;Zhang Y.;Geisz JF.;Friedman DJ.;Olson JM. Kurtz SR.;Mascarenhas A. .Nitrogen-activated transitions, level repulsion, and band gap reduction in GaAs1-xNx with x < 0.03[J].Physical review letters,1999(16):3312-3315.
[4] Yu K M;Walukiewicz W;Shan W .Nitrogen-induced increase of the maximum electron concentration in group Ⅲ-N-Ⅴ alloys[J].Physical Review B:Condensed Matter,2000,61:R13337.
[5] Wu J.;Walukiewicz W.;Yu KM.;Ager JW.;Haller EE.;Xin HP.;Tu CW.;Shan W. .Effect of band anticrossing on the optical transitions in GaAs1-xNx/GaAs multiple quantum wells - art. no. 085320[J].Physical Review.B.Condensed Matter,2001(8):5320-0.
[6] Plaza J;Castao J L;García B J .Temperature dependence of photoluminescence and photoreflectance spectra of dilute GaAsN alloys[J].Applied Physics Letters,2005,86:121918.
[7] Shan W.;Ager JW.;Haller EE.;Geisz JF.;Friedman DJ. Olson JM.;Kurtz SR.;Walukiewicz W. .Band anticrossing in GaInNAs alloys[J].Physical review letters,1999(6):1221-1224.
[8] Klar P J;Grüning H;Heimbrodt W et al.From N isoelectronic impurities to N-induced bands in the GaNxAs1-x alloy[J].Applied Physics Letters,2000,76:3439.
[9] Shan W.;Yu KM.;Ager JW.;Haller EE.;Geisz JF.;Friedman DJ.;Olson JM.;Kurtz SR.;Xin HP.;Tu CW.;Walukiewicz W. .Band anticrossing in III-N-V alloys[J].Physica status solidi, B. Basic research,2001(1):75-85.
[10] Varshni Y P .Temperature dependence of the energy gap in semiconductors[J].Physica (Utrecht),1967,34:149.
[11] Lenchyshyn L C;Thewalt M L W et al.Photoluminescence mechanisms in thin Si1-xGex quantum wells[J].Physical Review B:Condensed Matter,1993,47:R16655.
[12] Zhang Y;Mascarenhas A;Tu C W .Valence-band splitting and shear deformation potential of dilute GaAs1-xNx alloys[J].Physical Review B:Condensed Matter,2000,61:4433.
[13] Ya M H;Chen Y F;Huang Y S .Nonlinear behaviors of valence-band splitting and deformation potential in dilute GaNxAs1-x alloys[J].Journal of Applied Physics,2002,92:1446.
[14] 王茺,陈平平,刘昭麟,李天信,夏长生,陈效双,陆卫.稀掺杂GaNxAs1-x(x≤0.03)薄膜的调制光谱研究[J].物理学报,2006(07):3636-3641.
[15] 刘昭麟 .稀氮Ⅲ-N-V半导体及InAs量子点的分子束外延生长和性能研究[D].北京:中国科学院研究生院,2008.
[16] Wang C;Zhang B;Lu W et al.Optical transitions of surface InAs/GaAs(311B) quantum dots clearly identified by the piezoreflectance technique[J].Applied Surface Science,2008,254:4626.
[17] WANG Chong,LIU Zhao-Lin,CHEN Xue-Mei,XIA Chang-Sheng,ZHANG Shu,YANG Yu,LU Wei.Optimum Indium Concentration for Growth of 1.3μm InAs/InxGa1-xAs Quantum Dots in a Well[J].中国物理快报(英文版),2007(11):3260-3263.
[18] Kudrawiec R;Yuen HB;Motyka M;Gladysiewicz M;Misiewicz J;Bank SR;Bae HP;Wistey MA;Harris JS .Contactless electroreflectance of GaInNAsSb/GaAs single quantum wells with indium content of 8%-32%[J].Journal of Applied Physics,2007(1):3504-1-3504-9-0.
[19] Madelung.Semicoductors-Basic Data[M].Beilin:Springer-Verlag,1996:125.
[20] Olsen G H;Neuse C J;Smith R T .The effect of elastic strain on energy band gap and lattice parameter in Ⅲ-Ⅴ compounds[J].Journal of Applied Physics,1978,49:5523.
[21] Ng S T;Fan W J;Yoon S F .Comparison of electronic band structure and optical transparency conditions of InxGa1-x-As1-yNy/GaAs quantum wells calculated by 10-band,8-band,and 6-band k@p models[J].Physical Review B:Condensed Matter,2005,72:115341.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%