欢迎登录材料期刊网

材料期刊网

高级检索

在自制的新型组合式模具上进行两种不同结构模具下的反复模压变形制备超细晶5052铝合金板材,并研究了模具结构对其拉伸性能的影响.结果表明:限制模压(Constrained Groove Pressing,CGP)变形和非限制模压(Unconstrained Groove Pressing,UGP)变形均能够显著强化5052铝合金,抗拉强度随变形道次的增加而单调递增.5052铝合金经CGP和UGP变形后均呈现韧性断裂特征,CGP变形试样的伸长率随变形道次的增加基本保持不变,且在变形3道次后略有提高;UGP变形试样的伸长率随变形道次的增加不断减小,且显著低于CGP变形试样.CGP与UGP变形试样拉伸性能上的差异是由其晶粒细化能力上的本质差异决定的,CGP变形试样具有更为优异的综合力学性能.

参考文献

[1] 杨开怀,彭开萍,陈文哲.限制模压变形1060纯铝的组织演化与晶粒细化[J].中国有色金属学报,2011(12):3026-3032.
[2] 杨开怀,陈文哲.大体积超细晶金属材料的剧烈塑性变形法制备技术[J].塑性工程学报,2010(02):123-129,134.
[3] Shin DH.;Park JJ.;Kim YS.;Park KT. .Constrained groove pressing and its application to grain refinement of aluminum[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):98-103.
[4] A. Krishnaiah;U. Chakkingal;P. Venugopal .Applicability of the groove pressing technique for grain refinement in commercial purity copper[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(0):337-340.
[5] A. Krishnaiah;Uday Chakkingal;P. Venugopal .Production of ultrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing[J].Scripta materialia,2005(12):1229-1233.
[6] Zrnik, J;Kovarik, T;Novy, Z;Cieslar, M .Ultrafine-grained structure development and deformation behavior of aluminium processed by constrained groove pressing[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):126-129.
[7] Zrnik J;Kovarik T;Cieslar M .Microstrncture and properties of aluminium processed by constrained groove pressing[J].Materials Science Forum,2008,584-586(01):535-540.
[8] Peng, K.;Mou, X.;Zeng, J.;Shaw, L.L.;Qian, K.-W. .Equivalent strain, microstructure and hardness of H62 brass deformed by constrained groove pressing[J].Computational Materials Science,2011(4):1526-1532.
[9] Kaiping Peng;Ying Zhang;Leon L. Shaw .Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing[J].Acta materialia,2009(18):5543-5553.
[10] 杨开怀,彭开萍,陈文哲.模具结构对反复模压变形5052铝合金显微组织的影响[J].材料热处理学报,2011(06):103-108.
[11] 杨开怀,陈文哲.变形方式对模压变形5052铝合金影响的有限元模拟与试验研究[J].材料研究学报,2011(06):625-629.
[12] Oh-ishi K.;Smith DJ.;Langdon TG.;Horita Z. .Grain boundary structure in Al-Mg and Al-Mg-Sc alloys after equal-channel angular pressing[J].Journal of Materials Research,2001(2):583-589.
[13] Horita Z.;Smith D.J. .An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy[J].Journal of Materials Research,1996(8):1880-1890.
[14] A. A. Mazilkin;B. B. Straumal;E. Rabkin .Softening of nanostructured Al-Zn and Al-Mg alloys after severe plastic deformation[J].Acta materialia,2006(15):3933-3939.
[15] D.R. Fang;Z.F. Zhang;S.D. Wu;C.X. Huang;H. Zhang;N.Q. Zhao;J.J. Li .Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al-Cu alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):305-313.
[16] 刘腾,张伟,吴世丁,姜传斌,李守新,徐永波.双相合金Mg-8Li-1Al的等通道转角挤压Ⅱ.挤压后合金的室温拉伸性能[J].金属学报,2003(08):795-798.
[17] Champion Y.;Langlois C.;Guerin-Mailly S.;Langlois P.;Bonnentien JL. Hytch MJ. .Near-perfect elastoplasticity in pure nanocrystalline copper[J].Science,2003(5617):310-311.
[18] M.A. Meyers;A. Mishra;D.J. Benson .Mechanical properties of nanocrystalline materials[J].Progress in materials science,2006(4):427-556.
[19] D.R. Fang;Q.Q. Duan;N.Q. Zhao;J.J. Li;S.D. Wu;Z.F. Zhang .Tensile properties and fracture mechanism of Al–Mg alloy subjected to equal channel angular pressing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):137-144.
[20] A. Vinogradov;T. Ishida;K. Kitagawa .Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu-Cr alloy produced by equal-channel angular pressing[J].Acta materialia,2005(8):2181-2194.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%