欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-1500D型热模拟试验机对38MnVTi非调质钢进行热压缩试验,研究了其在950~1 200℃和应变速率为0.01~10 s-1条件下的热变形行为,基于Parasd和Murty两种失稳判据分别建立了动态材料模型(DMM)的加工图,利用加工图确定了试验钢在应变为0.8下的流变失稳区,并分析了两种加工图的差别.结果表明:两种加工图中失稳区域的面积大小相近,功率耗散系数的数值变化趋势相似,但它们的失稳区位置有差异;低的功率耗散系数可以作为一种识别热变形失稳的方法,应避免试验钢在高应变速率下进行大应变量变形;试验钢的热变形最佳工艺参数为变形温度1 050~1 200℃、应变速率0.04~1 s-1.

参考文献

[1] 张玉庭.热处理技师手册[M].北京:机械工业出版社,2007:533-540.
[2] A.J.DeArdo .Microalloyed strip steels for the 21st century[J].Materials Science Forum,1998(0):15-26.
[3] I.G.Baquet;R.Kaspar .Microalloying and a new post forging treatment of medium carbon steels[J].Materials Science Forum,1998(0):411-418.
[4] D.J.Naylor .Microalloyed forging steels[J].Materials Science Forum,1998(0):83-94.
[5] WANG Chun-xia;YU Fu-xiao;ZHAO Da-zhi et al.Hot deformation and processing maps of DC cast A1-15 %Si alloy[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,20 1 3,577:73-80.
[6] Y.V.R.K. Prasad;K.P. Rao .Materials modeling and finite element simulation of isothermal forging of electrolytic copper[J].Materials & design,2011(4):1851-1858.
[7] RAJPUT S K;DIKOVITS M;CHAUDHARI G P et al.Physical simulation of hot deformation and microstructural evolution of AISI 1016 steel using processing maps[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2013,587:291-300.
[8] Xiong Ma;Weidong Zeng;Bin Xu .Characterization of the hot deformation behavior of a Ti-22Al-25Nb alloy using processing maps based on the Murty criterion[J].Intermetallics,2012(1):1-7.
[9] 霍连喆,白兴红,孙丽坤,邵奎祥.一种支承辊用高铬钢的热变形行为及其热加工图[J].机械工程材料,2013(10):64-68,78.
[10] PRASAD Y V R K;GEGEL H L;DORAIVELU S M et al.Modeling of dynamic materials behavior in hot deformation:forging of Ti-6242[J].Metallurgical and Materials Transactions:A,1984,15:1883-1892.
[11] WELLSTEAD P E.Introduction to physical systems modeling[M].London,UK:Academic Press,1979
[12] ZIEGLER H.Progress in solid mechanics[M].New York:John Wiley & Sons,1965:91-193.
[13] PRIGOGINE I .Time,structure and fluctuations[J].SCIENCE,1978,201:777-787.
[14] HILLBORN R C.Chaos and nonlinear dynamics:an introduction for scientists and engineers[M].New York:Oxford University Press,1994
[15] Y. V. R. K. Prasad .Processing Maps: A Status Report[J].Journal of Materials Engineering and Performance,2003(6):638-645.
[16] HASSANIA F B E;CHENAOUIA A;DKIOUAKA R et al.Characterization of deformation stability of medium carbon microalloyed steel during hot forging using phenomcnological and continuum criteria[J].Journal of Materials Processing Technology,2008,199:140-149.
[17] 鲁世强,李鑫,王克鲁,董显娟,李臻熙,曹春晓.基于动态材料模型的材料热加工工艺优化方法[J].中国有色金属学报,2007(06):890-896.
[18] PRASAD Y V R K .Recent advances in the science of mechanical processing[J].Indian Journal of Technology,1990,28:435-451.
[19] KALYAN K A K S .Criteria for predicting metallurgical instabilities in processing maps[D].Bangalore,India:Indian Institute of Science,1987.
[20] Murty SVSN.;Rao BN. .On the development of instability criteria during hotworking with reference to IN 718[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):76-82.
[21] NARAYANA M S V S;NAGESWARA R B .On the flow localization concept in the processing maps of titanium alloy Ti-24Al-20Nb[J].Journal of Materials Processing Technology,2000,104:103-109.
[22] Murty S.V.S.N.;Rao B.N. .On the hot working characteristics of INCONEL alloy MA 754 using processing maps[J].Scandinavian Journal of Metallurgy,2000(4):146-150.
[23] Momeni, A.;Dehghani, K. .Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(21/22):5467-5473.
[24] H. Y. Kim;H. C. Kwon;H. W. Lee;Y. T. Im;S. M. Byon;H. D. Park .Processing map approach for surface defect prediction in the hot bar rolling[J].Journal of Materials Processing Technology,2008(1/3):70-80.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%