通过电镜分析及理论推导对羟基磷灰石(Hydroxyapatite,HA)/高密度聚乙烯(High density polyethylene,HDPE)复合材料界面粘结状态、HA颗粒对裂纹扩展的钝化、钉扎作用、复合纤维对体系分子热激活能的影响及复合纤维的能量吸收机制与增强增韧等进行了深入研究,结果表明:HA/HDPE复合材料通过纳米HA颗粒与HA/HDPE复合纤维在不同尺度上协同作用达到增强增韧的效果.即在纳米尺度,纳米HA颗粒的均匀分散和高的HA/HDPE界面结合强度显著提高了HDPE的结晶度,细化了HDPE晶粒尺寸,并在HA颗粒表面形成取向结晶层,从而使材料在断裂过程中通过HDPE取向结晶层的基体形变和HA脱粘过程对微裂纹起钝化和钉扎作用,并扩大能量耗散的区域,以阻滞微孔隙和银纹的长大和破断,抑制大裂纹的早期形成.在微米尺度,由于HA/HDPE复合纤维的定向排列,使体系的活化体积显著降低,大大增加了材料的断裂热激活能,从而显著提高材料的强度.另一方面,复合纤维在应力作用过程中通过纤维断裂、纤维拔出、裂纹偏转机制使材料在形变与破坏过程中耗散更多的能量,从而显著提高材料的强度和韧性.
参考文献
[1] | Patrick C W Jr,Mikos A G,McIntire L V.Prospect of tissue engineering[M]//Patrick Jr C W,Mikos A G,McIntire L V.Frontiers in tissue engineering.New York,USA:Elsevier Scienee,1998:1-25. |
[2] | Naughton G K.Emerging developments in tissue engineering and cell technology[J].Tissue Eng,1995,l(z):211-219. |
[3] | Langer R,Vacanti J P.Tissue engineering[J].Science,1993,260:920-926. |
[4] | Dietmar W.Hutmacher D W.Scaffolds in tissue engineering bone and cartilage[J].Biomaterials,2000,21(24):2529-2543. |
[5] | 曹丽云,曾丽平,黄剑锋,郭申,张海.短切碳纤维增强HA/PMMA生物复合材料的制备及性能[J].复合材料学报,2009,26(2):138-142.Cao Liyun,Zeng Liping,Huang Jianfeng,Guo Shen,Zhang Hai.Preparation and properties of carbon fiber modified HA/PMMA biocomposite[J].Acta Materiae Compositae Sinica,2009,26(2):138-142. |
[6] | 肖秀峰,黄琼瑜,刘榕芳,余厚德,林宗琼.纳米羟基磷灰石/聚合物多孔复合支架材料[J].复合材料学报,2008,28(6):39-46.Xiao Xiufeng,Huang Qiongyu,Liu Rongfang,She Houde,Lin Zongqiong.Nano-hydroxyapatite/polymer composite porous scaffold materials[J].Acts Materiae Compositae Sinica,2008,28(6):39-46. |
[7] | 王海斌,赫淑倩,赵冬梅,孙康宁,刘爱红.羧甲基壳聚糖/纳米羟基磷灰石复合支架材料的制备及生物安全性[J].复合材料学报,2008,25(6):88-92.Wang Haibin,He Shuqian,Zhao Dongmei,Sun Kangning,Liu Aihong.Preparation and biology security of the porous carboxymethyl chitosan/nano hydroxyapatite scaffold hioeomposites[J].Acta Materiae Compositae Sinica,2008,25(6):88-92. |
[8] | 沈烈,乔飞,张宁强,张稚燕,彭懋,朱飞燕.炭纤维增强羟基磷灰石/聚乳酸复合生物材料的力学性能和体外降解性能[J].复合材料学报,2007,24(5):61-65.Shen Lie,Qiao Fei,Zhang Yuqiang,Zhang Zhiyan,Peng Mao,Zhu Feiyan.Mechanical properties and degradation properties in vitro of carbon fiber reinforced hydroxyapatite/polylactide composite[J].Acta Materiae Compositae Sinica,2007,24(5):61-65. |
[9] | Wang M,Bonfield W.Chemically coupled hydroxyapatite-polyehtylene composites:Structure and properties[J].Biomaterials,2001,22:1311-1320 |
[10] | Wang M,Joseph R,Bonfield W.Hydroxyapatite-polyehtylene composites for bone substitution:Effects of ceramic particle size and morphology[J].Biomaterials,1998,19:2357-2366 |
[11] | Wang M,Deb S,Bonfield W.Chemically coupled hydroxyapatite-polyehtylene composites:Processing and characterization[J].Materials Letters,2000,44:119-124. |
[12] | Joseph R,McGregor W J,Martyn M T,et al.Effect of hydroxyapatite morphology/surface area on the rheology and process ability of hydroxyapatite filled polyethylene composites[J].Biomaterials,2002(23):4295-4302 |
[13] | Huang Suping,Zhou Kechao.Effects of in situ biomineralization on microstructural and mechanical properties of hydroxyapatite/polyethylene composites[J].Journal of Applied Polymer Science,2006,101(3):1842-1847. |
[14] | 黄苏萍,周科朝,李志友.原位矿化复合对HDPE/HA复合材料结晶形态与结晶动力学的影响[J].高分子材料科学与工程,2008,24(02):91-94.Huang Suping,Zhou Kechao,Li Zhiyou.Effects of in situ biomineralization on the crystallization kinetics and morphology of HDPE/HA composite[J].Polymer Materials Science & Engineering,2008,24(2):91-94. |
[15] | Wu Souheng.Generalized criterion for rubber toughening:The critical matrix ligament thickness[J].Journal of Applied Polymer Science,1988,35(2):549-561. |
[16] | 朱锡雄,朱国瑞.高分子材料强度学[M].杭州:浙江大学出版社,1991. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%