欢迎登录材料期刊网

材料期刊网

高级检索

为研发 W 合金新体系及其相应的制备技术,采用真空非自耗电弧熔炼方法制备了 W37.5 Fe56.9 B11.6和W18.4 Fe67.7 B13.9两种合金,利用光学显微镜、X射线衍射、扫描电镜和能谱仪分析了合金内部的相组成、组织形态及元素含量,并对合金的密度及压缩性能进行了测试和分析.研究表明:真空电弧熔炼W37.5 Fe56.9 B11.6和W18.4 Fe67.7 B13.9合金的密度分别为13.3和10.7 g/cm3;两种合金组织中分布着大量脆性相;W37.5 Fe56.9 B11.6合金的压缩屈服强度和最大压缩强度分别为2240和2321 MPa,而W18.4 Fe67.7 B13.9合金的压缩屈服强度和最大压缩强度分别为2400和2457 MPa;压缩后两种合金断口呈脆性断裂,断口局部有熔化现象.

In this study, alloys of W37.5Fe56.9B11.6(at.%)and W18.4Fe67.7B13.9(at.%)were prepared by vacuum non?consumable arc melting. The phase composition, morphology and elemental content were investigated by optical microscope ( OM ) , X?ray diffraction ( XRD ) , scanning electron microscope ( SEM ) and energy dispersive spectroscopy (EDS), respectively. The density and compression behavior were detected and analyzed. The results showed that the density of W37.5Fe56.9B11.6 and W18.4Fe67.7B13.9 was 13.3 g/cm3 and 10.7 g/cm3. Many brittle phases were observed in the two alloys. The yield strength and the maximum compressive strength of W37.5 Fe56.9 B11.6 were 2 240 MPa and 2 321 MPa, whereas those of W18.4Fe67.7B13.9 were 2 400 MPa and 2 457 MPa, respectively. Both of the alloys showed visible brittle fracture, on which there was partial melting phenomenon.

参考文献

[1] 赵慕岳,王伏生,范景莲.我国钨基高比重合金的发展现状与展望[J].粉末冶金材料科学与工程,2000(01):27-32.
[2] B. Pedersen;S. Bless .Behind-armor debris from the impact of hypervelocity tungsten penetrators[J].International journal of impact engineering,2006(1/12):605-614.
[3] 郎利辉,张东星,布国亮,姚松.钨基合金的预强化和后期强化技术[J].锻压技术,2012(04):1-7.
[4] 张存信,秦丽柏,米文宇,白志国.我国穿甲弹用钨合金研究的最新进展与展望[J].粉末冶金材料科学与工程,2006(03):127-132.
[5] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997:1-6.
[6] 张英明,周廉,孙军,韩明臣,倪沛彤,陈杜鹃,潘志强.钛合金真空自耗电弧熔炼技术发展[J].稀有金属快报,2008(05):9-14.
[7] 计玉珍,郑赟,鲍崇高.真空电弧炉设备与熔炼技术的发展[J].铸造技术,2008(06):827-829.
[8] LUO Anhua;罗丽.电弧熔炼W和W-Ir合金的超高温抗拉性能[J].钨钼材料,1995(02):33-35.
[9] M. Ohtsuki;R. Tamura;S. Takeuchi;S. Yoda;T. Ohmura .Hard metallic glass of tungsten-based alloy[J].Applied physics letters,2004(24):4911-4913.
[10] Madoka Ohtsuki;Kyoko Nagata;Ryuji Tamura .Tungsten-Based Metallic Glasses with High Crystallization Temperature, High Modulus and High Hardness[J].Materials transactions,2005(1):48-53.
[11] R. Yoshimoto;Y. Nogi;R. Tamura .Fabrication of refractory metal based metallic glasses[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(0):260-263.
[12] Suo, Z.Y.;Song, Y.L.;Yu, B.;Qiu, K.Q. .Fabrication of tungsten-based metallic glasses by low purity industrial raw materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(6):2912-2916.
[13] 董旭坤,李双明,李克伟,薛云龙,傅恒志.电弧熔炼Cr-40Ti-20Nb三元合金的组织与压缩性能[J].铸造,2012(06):592-594,597.
[14] 祝志祥,程兴旺,才鸿年,李树奎.高侵彻性能钨合金研究进展[J].兵器材料科学与工程,2006(06):69-72.
[15] R.D. Conner;R.B. Dandliker;V. Scruggs .Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites[J].International journal of impact engineering,2000(5):435-444.
[16] Haein Choi-Yim;Robert D. Conner;Frigyes Szuecs .Quasistatic and dynamic deformation of tungsten reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) bulk metallic glass matrix composites[J].Scripta materialia,2001(9):1039-1045.
[17] 田开文,尚福军,祝理君.具备绝热剪切敏感性的钨合金穿甲弹材料研究现状[J].兵器材料科学与工程,2005(04):53-56.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%