为研发 W 合金新体系及其相应的制备技术,采用真空非自耗电弧熔炼方法制备了 W37.5 Fe56.9 B11.6和W18.4 Fe67.7 B13.9两种合金,利用光学显微镜、X射线衍射、扫描电镜和能谱仪分析了合金内部的相组成、组织形态及元素含量,并对合金的密度及压缩性能进行了测试和分析.研究表明:真空电弧熔炼W37.5 Fe56.9 B11.6和W18.4 Fe67.7 B13.9合金的密度分别为13.3和10.7 g/cm3;两种合金组织中分布着大量脆性相;W37.5 Fe56.9 B11.6合金的压缩屈服强度和最大压缩强度分别为2240和2321 MPa,而W18.4 Fe67.7 B13.9合金的压缩屈服强度和最大压缩强度分别为2400和2457 MPa;压缩后两种合金断口呈脆性断裂,断口局部有熔化现象.
In this study, alloys of W37.5Fe56.9B11.6(at.%)and W18.4Fe67.7B13.9(at.%)were prepared by vacuum non?consumable arc melting. The phase composition, morphology and elemental content were investigated by optical microscope ( OM ) , X?ray diffraction ( XRD ) , scanning electron microscope ( SEM ) and energy dispersive spectroscopy (EDS), respectively. The density and compression behavior were detected and analyzed. The results showed that the density of W37.5Fe56.9B11.6 and W18.4Fe67.7B13.9 was 13.3 g/cm3 and 10.7 g/cm3. Many brittle phases were observed in the two alloys. The yield strength and the maximum compressive strength of W37.5 Fe56.9 B11.6 were 2 240 MPa and 2 321 MPa, whereas those of W18.4Fe67.7B13.9 were 2 400 MPa and 2 457 MPa, respectively. Both of the alloys showed visible brittle fracture, on which there was partial melting phenomenon.
参考文献
[1] | 赵慕岳,王伏生,范景莲.我国钨基高比重合金的发展现状与展望[J].粉末冶金材料科学与工程,2000(01):27-32. |
[2] | B. Pedersen;S. Bless .Behind-armor debris from the impact of hypervelocity tungsten penetrators[J].International journal of impact engineering,2006(1/12):605-614. |
[3] | 郎利辉,张东星,布国亮,姚松.钨基合金的预强化和后期强化技术[J].锻压技术,2012(04):1-7. |
[4] | 张存信,秦丽柏,米文宇,白志国.我国穿甲弹用钨合金研究的最新进展与展望[J].粉末冶金材料科学与工程,2006(03):127-132. |
[5] | 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997:1-6. |
[6] | 张英明,周廉,孙军,韩明臣,倪沛彤,陈杜鹃,潘志强.钛合金真空自耗电弧熔炼技术发展[J].稀有金属快报,2008(05):9-14. |
[7] | 计玉珍,郑赟,鲍崇高.真空电弧炉设备与熔炼技术的发展[J].铸造技术,2008(06):827-829. |
[8] | LUO Anhua;罗丽.电弧熔炼W和W-Ir合金的超高温抗拉性能[J].钨钼材料,1995(02):33-35. |
[9] | M. Ohtsuki;R. Tamura;S. Takeuchi;S. Yoda;T. Ohmura .Hard metallic glass of tungsten-based alloy[J].Applied physics letters,2004(24):4911-4913. |
[10] | Madoka Ohtsuki;Kyoko Nagata;Ryuji Tamura .Tungsten-Based Metallic Glasses with High Crystallization Temperature, High Modulus and High Hardness[J].Materials transactions,2005(1):48-53. |
[11] | R. Yoshimoto;Y. Nogi;R. Tamura .Fabrication of refractory metal based metallic glasses[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(0):260-263. |
[12] | Suo, Z.Y.;Song, Y.L.;Yu, B.;Qiu, K.Q. .Fabrication of tungsten-based metallic glasses by low purity industrial raw materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(6):2912-2916. |
[13] | 董旭坤,李双明,李克伟,薛云龙,傅恒志.电弧熔炼Cr-40Ti-20Nb三元合金的组织与压缩性能[J].铸造,2012(06):592-594,597. |
[14] | 祝志祥,程兴旺,才鸿年,李树奎.高侵彻性能钨合金研究进展[J].兵器材料科学与工程,2006(06):69-72. |
[15] | R.D. Conner;R.B. Dandliker;V. Scruggs .Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites[J].International journal of impact engineering,2000(5):435-444. |
[16] | Haein Choi-Yim;Robert D. Conner;Frigyes Szuecs .Quasistatic and dynamic deformation of tungsten reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) bulk metallic glass matrix composites[J].Scripta materialia,2001(9):1039-1045. |
[17] | 田开文,尚福军,祝理君.具备绝热剪切敏感性的钨合金穿甲弹材料研究现状[J].兵器材料科学与工程,2005(04):53-56. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%