欢迎登录材料期刊网

材料期刊网

高级检索

针对纤维束增强相在基体材料中的分布方式不同,建立了由固体基体和纤维束增强相两相介质组成的复合材料细观力学模型.假设该模型的细观结构呈周期性均匀分布,纤维束内的纤维接触是光滑的.采用二尺度展开法计算了复合材料的有效性能,得出了不同微结构分布的复合材料的刚度系数、横向弹性模量、泊松比和剪切模量随纤维束体分比的变化曲线,并将数值结果与实验数据进行了比较.研究表明,数值结果与实验数据有较好的吻合,增强相的分布直接影响到复合材料的力学性能.

参考文献

[1] 曾汉民.高分子复合材料的进展[J].材料工程,1989(1):1-29.Zeng Hanming.The progress in polymeric composites and their structure-property relationships[J].Journal of Materials Engineering,1989(1):1-29.
[2] 王国庆,程祥荣.纤维增强复合树脂的基础研究现状[J].口腔颔面修复学杂志,2003,4(1):64-66.Wang Guoqing,Cheng Xiangrong.The basic research progress in fibers reinforced composites[J].Chinese Journal of Prosthodontics,2003,4(1):64-66.
[3] Peng Xiaoqi.Cao Jian.A dual homogenization and finite element approach for material characterization of textile composites[J].Composites Part B,2002:33:45-56.
[4] Yang Qingsheng,Qin Qinghua.Modeling the effective elastoplastic properties of unidirectional composites reinforced by fiber bundles under transverse tension and shear loading[J].Materials Science and Engineering,2003,A344:140-145.
[5] 杨庆生,郑代华.纤维束增强复合材料的横向弹塑性性能研究[J].复合材料学报,2000,17(1):122-125.Yang Qingsheng,Zheng Daihua,Study on transverse elastoplastic properties of fiber bundle reinforced composites[J].Acta Materiae Compositae Sinica,2000,17(1):122-125.
[6] 雷友峰,魏德明,高德平.细观力学有限元法预测复合材料宏观有效性能模量[J].燃气涡轮试验与研究,2003,16(3):11-15.Lei Youfeng,Wei Deming,Gao Deping.Predicting macroscopic effective elastic moduli of composites by micromechanics FEM[J].Gas Turbine Experiment and Research,2003,16(3):11-15.
[7] 谭祥军,杨庆生.增强相分布方式对复合材料有效力学性能的影响[J].宇航材料工艺,2008,38(1):23-27.Tan Xiangjun,Yang Qingsheng.Influence of microstructure on effective mechanical properties of composites material[J].Aerospace Material & Technology,2008,38(1):23-27.
[8] 王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社,1991:1-22.
[9] Hassani B,Hinton E.A review of homogenization and topology optimizationⅠ:Homogenization theory for media with periodic structure[J].Computers and Structures,1998,69:707-717.
[10] Yang Qingsheng,Becker W.Numerical investigation for stress,strain and energy homogenization of orthotropic composite with periodic microstructure and non-symmetric inclusions[J].Computational Materials Science,2004,31:169-180.
[11] Hassani B,Hinton E.A review of homogenization and topology optimization Ⅱ:Analytical and numerical solution of homogenization equations[J].Computers and Structures,1998,69:719-738.
[12] Yang Q S,Becker W.A comparative investigation of different homogenization methods for prediction of the macroscopic properties of composites[J].Computer Modeling in Engineering & Sciences,2004,6(4),319-332.
[13] Kaw A K.Mechanics of composite materials[M].New York:CRC Press,1997:1-352.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%