欢迎登录材料期刊网

材料期刊网

高级检索

采用环氧树脂粘结Sm0.88Nd0.12Fe1.93合金颗粒,在外磁场中固化成型制备了磁致伸缩复合材料,研究了不同磁场中成型复合材料的显微组织、磁致伸缩和电阻率.结果表明,成型磁场为0T时,复合体系为0-3型构型,合金颗粒在树脂基体中无序分布;施加0.6 T的固化磁场,获得伪1-3型构型复合材料,合金颗粒趋近定向排列.Sm0.88Nd0.12Fe1.93合金颗粒体积分数为30%、固化磁场为0.6 T时,制备的复合材料在1.3 T磁场下的磁致伸缩系数(λ∥-λ⊥)可达-1088×10-6,为铸态合金磁致伸缩系数的86.6%.相同颗粒体积分数的粘结Sm0.88Nd0.12Fe1.93复合材料,固化磁场为0.6T较无固化磁场条件下的电阻率降低85%.

参考文献

[1] Clark A E.Ferromagnetic Materials[M].Amsterdam:north-holland,1980:531.
[2] Koon N C;Williams C M;Das B N .[J].Journal of Magnetism and Magnetic Materials,1991,100(1-3):173.
[3] Clark A E;Belson H S .[J].Physical Review B:Condensed Matter,1972,5(09):3642.
[4] Abbundi R;Clark A E;McMasters O D .[J].Journal of Applied Physics,1982,53(03):2664.
[5] Yang F;Liu W;Li S Q et al.[J].Materials Letters,2010,64(05):608.
[6] Ren, WJ;Yang, JL;Li, B;Li, D;Zhao, XG;Zhang, ZD .Magnetostriction and magnetic anisotropy of (Sm,Ce)Fe-2 compounds[J].Physica, B. Condensed Matter,2009(20):3410-3412.
[7] Guo ZJ.;Busbridge SC.;Wang BW.;Zhao XG.;Geng DY.;Zhang ZD. .Magnetostriction enhancement in Laves compounds (Sm,Yb)Fe-2[J].Journal of Magnetism and Magnetic Materials,2001(2/3):191-194.
[8] Babu V H;Markandeyulu G;Subrahmanyam A .[J].Applied Physics Letters,2007,90(25):252513.
[9] Yang, F;Liu, W;Lv, XK;Li, B;Li, SQ;Li, J;Zhang, ZD .Structural, magnetic properties and magnetostriction studies of Sm1-xNdxFe1.55 alloys[J].Journal of Magnetism and Magnetic Materials,2010(15):2095-2098.
[10] Yang F;Leung C M;Or S W et al.[J].Journal of Alloys and Compounds,2011,509(15):4954.
[11] 董旭峰,关新春,欧进萍,齐民.颗粒粒度分布对树脂基磁致伸缩复合材料性能的影响[J].复合材料学报,2010(02):1-8.
[12] Meng H;Zhang T L;Jiang C B et al.[J].Applied Physics Letters,2010,96(10):102501.
[13] Duenas T A;Carman G P .[J].Journal of Applied Physics,2000,87(09):46.
[14] Shliomis M .[J].Physics JEPT,1972,34(06):1291.
[15] 贾傲,张天丽,孟皓,蒋成保.粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J].金属学报,2009(12):1473-1478.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%