欢迎登录材料期刊网

材料期刊网

高级检索

采用分子动力学模拟方法研究了300K入射能量150eV时,以不同角度(5°、30°、60°和75°)入射的SiF3+与SiC表面的相互作用过程.模拟中使用了用于Si-F-C体系的Tersoff-Brenner势能函数.模拟结果显示,入射SiF3+与SiC表面相互作用后会分解,分解率随着入射角度的增加而减小.分解产物除少量散射外,大部分会沉积在SiC表面,Si和F在SiC表面的平均饱和沉积量随入射角度的增加而减少.随着SiF3+不断轰击SiC表面,SiC表面会形成Si-F-C反应层,且反应层厚度随着入射角度的增加而减少.同时发现SiC中的Si原子较C原子更容易被刻蚀,与实验结果一致.当刻蚀达到稳定,入射角度为5°、30°、60°和75°时,C的刻蚀率分别约为0.026、0.038、0.018、0.005,Si的刻蚀率分别约为0.043、0.051、0.043和0.023.各入射角度下,产物分子种类主要为F、SiF和SiF2.F和SiF产物量随入射角度增加而增加,而SiF2产量随入射角度增加而减少.在入射角度等于5°和30°时,SixFvVz是主要的含C产物;而在入射角度等于60°和75°时,CF是主要的含C产物.在入射角度等于5°和30°时,SiF2是主要的含Si产物;在入射角度等于60°和75°时,SiF是主要的含Si产物.刻蚀主要通过化学增强的物理溅射进行.

参考文献

[1] Bhatnagar M.;Baliga B.J. .Comparison of 6H-SiC, 3C-SiC, and Si for power devices[J].IEEE Transactions on Electron Devices,1993(3):645-655.
[2] S. Sundararajan;B. Bhushan .Micro/nanotribological studies of polysilicon and SiC films for MEMS applications[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,1998(2):251-261.
[3] Ishida Y;Kushibe M;Takahashi T et al.Investigation of the relationship between defects and electrical properties of 3G-SiC epilayers[J].Materials Science Forum,2001,389-393:459.
[4] Mehran Mehregany;Christian A. Zorman;Narayanan Rajan;Chien Hung Wu .Silicon carbide MEMS for harsh environments[J].Proceedings of the IEEE,1998(8):1594-1610.
[5] Chung G S;Ohn C M .Etching characteristics of polycrystalline 3C-SiC films using enhanced rie[J].Materials Science Forum,2008,600-603:875.
[6] Sarro PM. .Silicon carbide as a new MEMS technology[J].Sensors and Actuators, A. Physical,2000(1/3):210-218.
[7] Robert G. Azevedo;Debbie G. Jones;Anand V. Jog;Babak Jamshidi;David R. Myers;Li Chen;Xiao-an Fu;Mehran Mehregany;Muthu B. J. Wijesundara;Albert P. Pisano .A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications[J].IEEE sensors journal,2007(4):568-576.
[8] Byungwhan Kim;Sung-Min Kong;Byung-Taek Lee .Modeling SiC etching in C_(2)F_(6)/O_(2) inductively coupled plasma using neural networks[J].Journal of Vacuum Science & Technology, A. Vacuum, Surfaces, and Films,2002(1):146-152.
[9] Morimichi Watanabe;Yukimasa Mori;Hiroaki Sakai;Takashi Iida;Shunsuke Koide;Eri Maeta;Kyoichi Sawabe;Kosuke Shobatake .Thermal reaction of polycrystalline SiC with XeF_(2)[J].Journal of Vacuum Science & Technology, A. Vacuum, Surfaces, and Films,2005(6):1638-1646.
[10] Jin N;Quancheng G;Guosheng S et al.The icp etching technology of 3C-SiC films[J].J Phys Conference Series,2006,34(01):511.
[11] Winters H F;Coburn J W .Surface science aspects of etching reactions[J].Surface Science Reports,1992,14(4-6):162.
[12] Winters H F .Etch products from the reaction of XeF2 with SiO2,Si3N4,SiC and Si in the presence of ion bombardment[J].Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures,1983,1(04):927.
[13] Gray D C;Mohindra V;Sawin H H .Redeposition kinetics in fluorocarbon plasma etching[J].Journal of Vacuum Science and Technology A:Vacuum Surfaces and Films,1994,12(02):354.
[14] F. Gou;Meng Chuanliang;Chen Lingzhouting;Qiu Qian .Atomic simulation of SiC etching by energetic SiF_(3)[J].Journal of Vacuum Science & Technology, A. Vacuum, Surfaces, and Films,2007(4):680-685.
[15] Gou F;Chen LZT;Meng C;Qian Q .Molecular dynamics simulations of reactive etching of SiC by energetic fluorine[J].Applied physics, A. Materials science & processing,2007(2):385-390.
[16] Gou F;Chen Z;Zhiqian C .Reactive etching of SiC by energetic CF3:Molecular dynamics simulation[J].Thin Solid Films,2008,516(08):1832.
[17] Abrams C F;Graves D B .Atomistic simulation of silicon bombardment by energetic CF3 product distributions and energies[J].Thin Solid Films,2000,374:150.
[18] Abrams C F;Graves D B .Atomistic simulation of fluorocarbon deposition on Si by continuous bombardment with energetic CF and CF2[J].Journal of Vacuum Science and Technology A:Vacuum Surfaces and Films,2001,19(01):175.
[19] P. Chabert;G. Cunge;J.-P. Booth;J. Perrin .Reactive ion etching of silicon carbide in SF_(6) gas: Detection of CF, CF_(2), and SiF_(2) etch products[J].Applied physics letters,2001(7):916-918.
[20] Abrams C F;Graves D B .Molecular dynamics simulations of Si etching by energetic CF3[J].Journal of Applied Physics,1999,86(11):5938.
[21] Swope W C;Andersen H C;Berens P H et al.A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters[J].Journal of Chemical Physics,1982,76(01):637.
[22] F.Gou;M.A.Gleeson;A.W.Kleyn .Theoretical modeling of energy redistribution and stereodynamics in CF scattering from Si(100) under grazing incidence[J].Physical chemistry chemical physics: PCCP,2006(47):5522-5534.
[23] Berendsen H J C;Postma J P M;Gunsteren W F V et al.Molecular dynamics with coupling to an external bath[J].Journal of Chemical Physics,1984,81(08):3684.
[24] Gou F;Kleyn A W;Gleeson M A .The application of molecular dynamics to the study of plasma-surface interactions:CFx with silicon[J].International Reviews in Physical Chemistry,2008,27(02):229.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%