欢迎登录材料期刊网

材料期刊网

高级检索

研究了Ti0.096V0.864Fe0.04合金的储氢性能、热力学特性及吸放氢物相变化.研究结果表明,该合金具有较好的吸放氢压力平台特性,合金的20℃最大吸氢量达到3.75%(质量分数),氢化物生成焓变△H°为-26.6kJ·(mol H2)-1,熵变△S°为-102.5J·(K·mol H2)-1.合金颗粒度、吸放氢循环次数对合金的吸氢速度都有较大影响.该合金具有较好的抗粉化能力,经过10次吸放氢循环后合金粉的平均粒径比吸氢前仅减小约1/5.XRD及SEM分析表明,合金未吸氢前是由单一的体心立方(BCC)结构的钒基固溶体相组成;4MPa下吸氢后生成大量面心立方(FCC)结构的Ti0.096V0.864Fe0.04H2.01和少量体心四方(BCT)结构的Ti0.096 V0.864 Fe0.04H0.81两种氢化物相;50℃下对0.001MPa放氢后,合金中除Ti0.096V00864Fe0.04基BCC固溶体相外,还存在Ti0.096V0.864Fe0.04H0.81氢化物相.

参考文献

[1] 胡子龙.贮氢材料[M].北京:化学工业出版社,2002
[2] 大角泰章;吴永宽.金属氢化物的性质与应用[M].北京:化学工业出版社,1990
[3] Nomura Kei;Akiba Etsuo .[J].Journal of Alloys and Compounds,1995,231:513-517.
[4] Okada M.;Kuriiwa T.;Kamegawa A.;Takamura H. .Role of intermetallics in hydrogen storage materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(0):305-312.
[5] Kabutomori T;Takeda H;Wakisaka Y et al.[J].Journal of Alloys and Compounds,1995,231:528-532.
[6] Wook C S;Suck H C;Nyeon P C et al.[J].Journal of Alloys and Compounds,1999,288:294-298.
[7] Okada M;Kuriiwa T;Tamura T et al.[J].Journal of Alloys and Compounds,2002,330-332:511-516.
[8] Tamura T;Tominaga Y;Matsumoto K et al.[J].Journal of Alloys and Compounds,2002,330-332:522-525.
[9] Wook C S;Suck H C;Nyeon P C et al.[J].Journal of Alloys and Compounds,1999,289:244-250.
[10] Lynch J F;Maeland A J;Libowitz G G .[J].Zeitschrift für Physikalische Chemie,1985,145:51-59.
[11] Akiba E;Iba H .[J].Intermetallics,1998,6:461-470.
[12] Cho S.W.;Enoki H. .Effect of Fe addition on hydrogen storage characteristics of Ti_(0.16) Zr_(0.05) Cr_(0.22)V_(0.57) alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2000(1/2):304-310.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%