欢迎登录材料期刊网

材料期刊网

高级检索

为了提高镍基单晶高温合金的高温强度和其他综合性能,第四代合金中加入了铂族元素Ru。Ru的加入降低了γ相的堆垛层错能,减少了γ'相的体积分数。作为一种有效的固溶强化元素,Ru对γ相和γ'相的强化均起到了很显著的作用,提高了合金的蠕变性能,同时Ru也影响了难熔元素在合金中的偏析行为,降低了难熔元素在γ相中的过饱和度,并能抑制TCP相等有害相的析出,显著提高了合金的抗蠕变性能和合金显微组织的稳定性。综合分析了Ru的加入对镍基单晶高温合金微观组织结构的影响。

Addition of Ru in Ni-base single crystal superalloys had been used to improve the elevated temperature strength and other properties.Significant decreases in stacking fault energy of the γ phase and the volume fraction of γ′ phase were observed with the addition of Ru in the superalloys.As well as serving as an effective solid-solution strengthening element in Ni-base single crystal superalloys,Ru-addition was able to effectively strengthen both the γ and γ′ phases and suppress the formation of TCP phases.Due to the changes in partitioning behavior of elements and the slight decrease in supersaturation of refractory elements in γ phase with addition of Ru,the creep resistance and microstructural stability of the alloy were improved remarkably.The influence of Ru on microstructure of Ni-base single crystal superalloys was reviewed.

参考文献

[1] 师昌绪;仲增墉 .中国高温合金40年[J].金属学报,1977,33(01):1-8.
[2] 胡壮麒,刘丽荣,金涛,孙晓峰.镍基单晶高温合金的发展[J].航空发动机,2005(03):1-7.
[3] Collins H E .The effect of thermal exposure on the microstructure and mechanical properties of nickel-base superalloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1974,6(01):189-204.
[4] 李双明,杜炜,张军,李金山,刘林,傅恒志.CMSX-2单晶高温合金高梯度定向凝固下过渡区的组织演化特征[J].金属学报,2002(11):1195-1198.
[5] G. E. Fuchs .Solution heat treatment response of a third generation single crystal Ni-base superalloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(1/2):52-60.
[6] Kobayashi T;Koiznmi Y;Nakazawa S.Creep life extension of a single crystal superalloy[A].Newcastle upon Tyne,UK,1997:766.
[7] Wang Y J;Wang C Y .The alloying mechanisms of Re,Ru in the quaternary Ni-based superalloys γ/γ' interfacc:A first principles calculation[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,490(1-2):242-249.
[8] Zhang J X;Koizumi Y;Kobayashi T et al.Strengthening by γ/γ' interfacial dislocation networks in TMS-162-toward a fifth-generation single-crystal superalloy[J].MetaUurgical and Materials Transactions A,2004,35(06):1911-1914.
[9] Koizumi Y;Kobayashi T;Yokokawa T.Development of next-generation Ni-base single crystal superalloys[M].Superalloys,Warrendale,PA:TMS,2004:35-43.
[10] 骆宇时,刘世忠,孙凤礼.铼在单晶高温合金中强化机理的研究现状[J].材料导报,2005(08):55-58.
[11] A.C. Yeh;S. Tin .Effects of Ru and Re Additions on the High Temperature Flow Stresses of Ni-Base Single Crystal Superalloys[J].Scripta materialia,2005(6):519-524.
[12] Hobbs, RA;Zhang, L;Rae, CMF;Tin, S .The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal nickel-base superalloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):65-76.
[13] Pettinari F.;Douin J.;Saada G.;Caron P.;Coujou A.;Clement N. .Stacking fault energy in short-range ordered gamma-phases of Ni-based superalloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):511-519.
[14] R. C. Reed;A. C. Yeh;S. Tin;S. S. Babu;M. K. Miller .Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography[J].Scripta materialia,2004(4):327-331.
[15] Q. Feng;T.K. Nandy;S. Tin .Solidification of high-refractory ruthenium-containing superalloys[J].Acta materialia,2003(1):269-284.
[16] M. FAEHRMANN;P. FRATZL;O. PARIS;E. FAEHRMANN;WILLIAM C. JOHNSON .INFLUENCE OF COHERENCY STRESS ON MICROSTRUCTURAL EVOLUTION IN MODEL Ni-Al-Mo ALLOYS[J].Acta Metallurgica et Materialia,1995(3):1007-1022.
[17] Fredholm A;Strudel J L.On the creep resistance of some nickel-base single crystals[M].Superalloys,Seven Springs,PA:TMS,1988:211-220.
[18] Tien J K;Copley S M .The effect of orientation and sense of applied uniaxial stress on the morphology of coherent gamma prime precipitates in stress annealed nickel-base superalloy crystals[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1971,2(04):215-219.
[19] Rowland L J;Feng Q;Pollock T M.Microstructural stability and creep of Ru-containing nickel-base superalloys[M].Superalloys,Warrendale,PA:TMS,2004:697-706.
[20] L. R. Liu;T. Jin;N. R. Zhao .Microstructural evolution of a single crystal nickel-base superalloy during thermal exposure[J].Materials Letters,2003(29):4540-4546.
[21] Murakumo T;Kobayashi T;Nakazawa S.TEM observation of microstructure in Ni-base single crystal superalloys with and without Re[A].Tsukuba Science City:National Institute for Materials Science,2001:19-21.
[22] 郑亮,谷臣清,郑运荣.含Ru铸造镍基高温合金的显微组织[J].材料工程,2002(05):3-6.
[23] Yokokawa T;Osawa M;Nishida K et al.Partitioning behavior of platinum group metals on the γ and γ' phases of Ni-base superalloys at high temperatures[J].Seripta M aterialia,2003,49(10):1041-1046.
[24] Ohno K;Yamazaki M.Affecting X-ray Microfluorescence (XRMF) Analysis[J].Advances in X-Ray Analysis,1987(30):62-64.
[25] Murakami H;Harada H.The location of atoms in Re-and V-containing muhicomponent nickel-base single-crystal superalloys[J].Applied Surface Science,1994(76-77):177-183.
[26] 郑亮,谷臣清,郑运荣.Ru对铸造镍基高温合金凝固行为的影响[J].中国有色金属学报,2002(06):1199-1204.
[27] O' Hara K S;Walston W S;Ross E W et al.Nickel base superalloy and article[P].US,Patent No.5482789,1996.
[28] Caron P.High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications[M].Superalloys,Warrendale,PA:TMS,2000:737-746.
[29] A. Volek;F. Pyczak;R. F. Singer .Partitioning of Re Between gamma and gamma' Phase in Nickel-Base Superalloys[J].Scripta materialia,2005(2):141-145.
[30] J.S. Van Sluytman;A. La Fontaine;J.M. Cairney .Elemental partitioning of platinum group metal containing Ni-base superalloys using electron microprobe analysis and atom probe tomography[J].Acta materialia,2010(6):1952-1962.
[31] R.M. KEARSEY;J.C. BEDDOES;P. JONES .Compositional design considerations for microsegregation in single crystal superalloy systems[J].Intermetallics,2004(7/9):903-910.
[32] 茆亮 .Ru对单晶高温合金微观组织和力学性能的影响[D].沈阳:沈阳工业大学,2010.
[33] Tin S;Yeh A C;Ofori A P.Atonic partitioning of ruthenium in Ni-based superalloys[M].Superalloys,Warrendale,PA:TMS,2004:735-742.
[34] Ofori A P;Humphreys C J;Tin S.A TEM study of the effect of platinum group metals in advanced single crystal nickel-base superalloys[M].Superalloys,Warrendale,PA:TMS,2004:787-794.
[35] A.P. Ofori;C.J. Rossouw;C.J. Humphreys .Determining the site occupancy of Ru in the L1_2 phase of a Ni-base superalloy using ALCHEMI[J].Acta materialia,2005(1):97-110.
[36] C.Y. Geng;C.Y. Wang;T. Yu .Site preference and alloying effect of platinum group metals in gamma-Ni_3Al[J].Acta materialia,2004(18):5427-5433.
[37] S. Raju;E. Mohandas;V. S. Raghunathan .A study of ternary element site substitution in Ni3Al using pseudopotential orbital radii based structure maps[J].Scripta materialia,1996(11):1785-1790.
[38] Shen J;Wang Y;Chen NX.Site preference of ternary additions in Ni3Al[J].Progress in Natural Science,2000(10):457-462.
[39] Pessah M;Caron P;Khan T.Effect of μ phase on the mechanical properties of a nickel-base single crystal superalloy[M].Superalloys,Warrendale,PA:TMS,1992:567-576.
[40] Rae C M F;Karunaratne M S A;Small C J.Topologically close packed phases in an experimental rhenium-containing single crystal superalloy[M].Superalloys,Warrendale,PA:TMS,2000:767-776.
[41] Cox D C;Rae C M F;Reed R C.Life assessment of hot section gas turbine components[A].London:The Institute of Materials,2000:119-123.
[42] 郭建亭.电子空穴理论在高温合金中的应用[J].物理,1982(11):661.
[43] Sato A;Harada H;Yokokawa T;Murakumo T;Koizumi Y;Kobayashi T;Imai H .The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys[J].Scripta materialia,2006(9):1679-1684.
[44] A.C. YEH;S. TIN .Effects of Ru on the High-Temperature Phase Stability of Ni-Base Single-Crystal Superalloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2006(9):2621-2631.
[45] Feng Q;Nandy T K;Pollock T M .The Re (Ru)-rich 8-phase in Ru-containing superalloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,373(1-2):239-249.
[46] C. M. F. RAE;R. C. REED .THE PRECIPITATION OF TOPOLOGICALLY CLOSE-PACKED PHASES IN RHENIUM-CONTAINING SUPERALLOYS[J].Acta materialia,2001(19):4113-4125.
[47] Darolia R;Lahrman D F;Field R D.Formation of topologically closed packed phases in nickle base single crystal superalloys[M].Superalloys,Seven Springs,PA:TMS,1988:255-264.
[48] Caron P.Distribution of platinum group metals in Ni-base single crystal superalloys superalloys[M].Superalloys,Warrendale,PA:TMS,2000:747-756.
[49] Walston S;Cetel A;MacKay R.Joint development of a fourth generation single crystal superalloy[M].Superalloys,Warrendale,PA:TMS,2004:15-24.
[50] Koizumi Y;Kobayashi T;Yokokawa T.Development of next-generation Ni-base single crystal superalloys[A].,2004:35-44.
[51] Yeh A C;Rae C M F;Tin S.High temperature creep behavious of Ru-bearing Ni-based single crystal superalloy[M].Superalloys,Warrendale,PA:TMS,2004:677-686.
[52] Hobbs R A .Solidification characteristics,microstructural stability & creep behaviour of advanced ruthenium-bearing nickel-base single crystal superalloys[D].Cambridge,UK:The University of Cambridge,2006.
[53] 蔡玉林,郑运荣.铸造镍基高温合金枝晶间强化机理的研究[J].航空学报,1978(03):97.
[54] 陈国胜,金鑫,周奠华,王世普,谢伟,王林涛.硼含量对镍基合金GH4049晶界析出相和高温性能的影响[J].金属学报,2005(06):622-626.
[55] A.V. Shulga .Boron and carbon behavior in the cast Ni-base superalloy EP962[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2007(1/2):155-160.
[56] W. Osterle;S. Krause;T. Moelders .Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from Rene 80[J].Materials Characterization,2008(11):1564-1571.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%