欢迎登录材料期刊网

材料期刊网

高级检索

Nano-TiO2粒子具有许多独特的物理和化学性质,在橡胶、塑料和胶粘剂等领域有非常好的应用前景,因而受到广泛关注.综述了近几年nano-TiO2制备方法的研究进展,分析对比了溶胶-凝胶法、沉淀法、水解法、水热法和微乳液法等方法的优缺点;介绍了nano-TiO2在环氧树脂(EP)改性中的应用,并展望了其应用前景.

参考文献

[1] Pablo Carballeira;Frank Haupert .Toughening Effects of Titanium Dioxide Nanoparticles on TiO2/Epoxy Resin Nanocomposites[J].Polymer Composites,2010(7):1241-1246.
[2] Xiaobo Chen;Samuel S. Mao .Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications[J].Chemical Reviews,2007(7):2891-2959.
[3] A.Hosseinnia;M.Keyanpour-Rad;M.Kazemzad .A novel approach for preparation of highly crystalline anatase TiO2 nanopowder from the agglomerates[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2009(3):390-392.
[4] 周利民,刘峙嵘,黄群武.凝胶-溶胶法制备纳米二氧化钛的pH控制[J].无机盐工业,2007(03):31-33.
[5] 冯光峰,黎汉生.微乳液-溶胶凝胶法制备TiO2纳米光催化剂及结构表征[J].广东化工,2009(06):58-60,255-256.
[6] Wuyi Zhou;Qingyun Cao;Shaoqiu Tang .Effects on the size of nano-TiO_2 powders prepared with sol-emulsion-gel method[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2006(1):32-36.
[7] 肖凡平,张世英,陈振华,吴洛义,余取民.溶胶-乳化-凝胶法制备TiO2纳米粉体的晶化过程[J].硅酸盐通报,2007(02):287-290.
[8] 万涛,王跃川.反胶束溶胶-凝胶法制备纳米TiO2[J].石油化工,2005(05):464-469.
[9] Hui Wang;Pingan Liu;Xiaosu Cheng .Effect of surfactants on synthesis of TiO2 nano-particles by homogeneous precipitation method[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2008(1):52-54.
[10] 张凌云,黎汉生,张东翔.用反萃界面沉淀法制备二氧化钛超细粉体[J].材料研究学报,2007(02):199-204.
[11] 陈云华,林安,甘复兴.渗透水解TiCl4制备纳米TiO2[J].无机材料学报,2007(01):53-58.
[12] 扈玫珑,徐盛明,白晨光,徐刚,吕学伟.水解制备球形TiO2及其水解过程动力学[J].物理化学学报,2009(08):1511-1516.
[13] 胡伟华,翟庆洲,汪海云.水热法制备TiO2纳米粒子[J].湿法冶金,2009(04):246-248.
[14] 闫智英,刘强,郑文君.离子液体-水的混和溶剂中,纳米TiO2的制备与表征[J].无机化学学报,2006(11):2055-2060.
[15] A.V. Murugan;V. Samuel;V. Ravi .Synthesis of nanocrystalline anatase TiO_2 by microwave hydrothermal method[J].Materials Letters,2006(4):479-480.
[16] F.A.Deorsola;D.Vallauri .Study of the process parameters in the synthesis of TiO2 nanospheres through reactive microemulsion precipitation[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2009(3):304-309.
[17] B. DeBenedetti;D. Vallauri;F. A. Deorsola;M. Martinez Garcia .Synthesis of TiO{sub}2 nanospheres through microemulsion reactive precipitation[J].Journal of electroceramics,2006(1):37-40.
[18] Chung-Hsin Lu;Ming-Chang Wen .Synthesis of nanosized TiO_2 powders via a hydrothermal microemulsion process[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2008(1/2):153-158.
[19] Wei-Ning Wang;I. Wuled Lenggoro;Yoshitake Terashi .One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2005(3):194-202.
[20] J. C. Kim;Y. N. Kim;E. O. Chi .Fabrication of TiO_2 nanospheres by template replication in porous carbon networks[J].Journal of Materials Research,2003(4):780-783.
[21] Suraj Kumar Tripathy;Trilochan Sahoo;Mamata Mohapatra;Shashi Anand;Yeon-Tae Yu .Polyol-assisted synthesis of TiO2 nanoparticles in a semi-aqueous solvent[J].The journal of physics and chemistry of solids,2009(1):147-152.
[22] Jha, AK;Prasad, K;Kulkarni, AR .Synthesis of TiO2 nanoparticles using microorganisms[J].Colloids and Surfaces. B, Biointerfaces,2009(2):226-229.
[23] Huang KS;Nien YH;Chen JS;Shieh TR;Chen JW .Synthesos and properties of epoxy/TiO2 composite materials[J].Polymer Composites,2006(2):195-200.
[24] 翟晓瑜,张秋禹,艾秋实,马明亮,焦金成.纳米二氧化硅的制备及其在环氧树脂中的应用[J].中国胶粘剂,2009(06):62-65.
[25] 康文韬,占德权,沈宁祥.环氧树脂/无机纳米材料复合研究进展[J].中国胶粘剂,2003(03):55-57,61.
[26] 刘扬,王士巍,秦伟.纳米TiO2对环氧树脂力学性能的影响[J].纤维复合材料,2005(02):3-5,15.
[27] 王炳正,周文龙,陈国清,马四妹.MQ硅树脂/纳米TiO2复合改性环氧树脂的结构与性能[J].中国胶粘剂,2009(09):10-13.
[28] 熊磊,王汝敏,梁红波,管静.超支化聚合物接枝纳米TiO2/环氧树脂复合材料的制备与表征[J].中国胶粘剂,2009(04):26-30.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%