功能材料, 2007, 38(4): 642-645.
TiO2半导体特性的转化与能带模型失效的理论研究
1.北京航空航天大学,材料与工程学院,北京,100083
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了对厚壁型钢管的冷弯工艺改进、性能分析、结构强度设计和数值模拟结果的验证提供重要依据,进行了冷弯厚壁钢管上截取的平板件、弯角件、母材和相应方、矩形截面短柱的力学性能试验研究,获得了短柱全截面屈服强度相对于母材强度的提高值.分别运用北美等国厚壁冷弯型钢规范、国内薄壁冷弯型钢规范以及相关文献中的修正规范,对我国厚壁冷弯方矩形型钢管全截面强度进行设计和对比分析.结果表明:因冷弯工艺不同,国外公式计算的结果高于国内短柱实测值,国内厚壁冷弯型钢的强度设计不能照搬现有的国外厚壁冷弯型钢设计规范;国内薄壁公式能否适用要视型钢的冷作硬化效应程度决定;原料的强屈比和冷弯应变程度越大,则冷作硬化效应越大;焊接热使板件受到低温\"退火\"的作用不可忽略,其常常导致竖直配辊冷弯厚壁矩形型钢时,两竖直侧平板件强度低于母材.","authors":[{"authorName":"胡盛德","id":"1676a5d1-0178-4f1c-abf6-c4b55176a936","originalAuthorName":"胡盛德"},{"authorName":"李立新","id":"5b0ac132-5acf-4262-9d52-2175aab4905f","originalAuthorName":"李立新"},{"authorName":"周家林","id":"6f2fa53d-21c9-4986-b6ca-94dbdb6f60e4","originalAuthorName":"周家林"},{"authorName":"张恒","id":"d908d0cd-d439-4670-b4f4-df7b67b4ef8c","originalAuthorName":"张恒"},{"authorName":"黄宁","id":"7a2a4cfb-7a43-4eba-af4a-1b8a1ebb00a1","originalAuthorName":"黄宁"}],"doi":"","fpage":"76","id":"162ba7d8-204b-4787-af6b-1ef77d019453","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"f3b55d49-df40-40ee-968f-a28b9c33b125","keyword":"厚壁方矩形管","originalKeyword":"厚壁方矩形管"},{"id":"0690889b-1dda-493f-922a-74436c42e87a","keyword":"冷弯成型","originalKeyword":"冷弯成型"},{"id":"a9eb7d21-2b1f-4e65-b442-6a178cef8644","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"a1eb67ae-c46f-44a1-bc9c-90a1600e106c","keyword":"冷作硬化效应","originalKeyword":"冷作硬化效应"},{"id":"6403a007-e773-4e19-b789-1dfe69612e37","keyword":"结构强度设计","originalKeyword":"结构强度设计"}],"language":"zh","publisherId":"clkxygc201001018","title":"厚壁方矩形管冷弯效应对比分析","volume":"28","year":"2010"},{"abstractinfo":"根据形变强化非调质钢螺栓的制造工序,对MFT8非调质钢原材料、冷拔和时效处理三种状态下的形变强化效应进行研究,比较了其形变硬化指数及力学性能,研究分析了组织对其性能的影响.结果表明:MFT8非调质钢形变强化效应明显;时效处理后仍具有良好的形变强化能力,可以确保螺栓在使用时的安全性;强化后的螺栓各项力学性能指标达到8.8级技术要求,研究材料能够取代调质钢制造高强度螺栓.","authors":[{"authorName":"蔡璐","id":"66a41650-5911-4717-b91a-19bf09d734fe","originalAuthorName":"蔡璐"},{"authorName":"王章忠","id":"c55efc09-1132-4dc8-9d99-2cba85e3b3d4","originalAuthorName":"王章忠"},{"authorName":"赵秀明","id":"4a82f2ba-3ec7-472b-8963-b0bf46f1c30c","originalAuthorName":"赵秀明"},{"authorName":"贺显聪","id":"680a6df0-3da9-45ed-aeab-ec4e1c706d9f","originalAuthorName":"贺显聪"}],"doi":"10.3969/j.issn.1001-4381.2010.04.016","fpage":"69","id":"c99bb915-79b8-48a9-ae14-45af3deab62e","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"019bfc45-69a5-404e-bcf2-9c4d8e30d758","keyword":"形变强化","originalKeyword":"形变强化"},{"id":"0ecf114e-3acb-4422-bcd5-c86a38b9062c","keyword":"非调质钢","originalKeyword":"非调质钢"},{"id":"c6ec2538-aba0-4b67-ab1f-7600c444a0bc","keyword":"螺栓","originalKeyword":"螺栓"}],"language":"zh","publisherId":"clgc201004016","title":"冷作硬化非调质钢螺栓的形变强化效应","volume":"","year":"2010"},{"abstractinfo":"用多弧离子镀及离子氮碳共渗技术对基体钢表面进行了硬化 处理。对表面硬化层在不同冲击功下(0J、0.2J、1J)的耐磨性进行了研究,两种表面硬 化技术分别应用于不同品种的冷作模具,达到了显著提高模具使用寿命的效果。","authors":[{"authorName":"陆德平","id":"7033e946-a751-4b77-96fd-05ed4b6f8726","originalAuthorName":"陆德平"},{"authorName":"张德元","id":"c00cfb32-b0eb-441b-82f6-ca3daed6a2ce","originalAuthorName":"张德元"},{"authorName":"邓鸣","id":"26a7f6f0-2271-4cd2-b199-f4e68ffd9183","originalAuthorName":"邓鸣"},{"authorName":"付青峰","id":"9670e9b6-af40-4247-b643-83284da04332","originalAuthorName":"付青峰"},{"authorName":"许兰萍","id":"5825eeba-96e2-4cf3-8e71-06c1311aae55","originalAuthorName":"许兰萍"}],"doi":"10.3969/j.issn.1000-3738.2001.02.009","fpage":"29","id":"810dd31c-9071-429c-b260-1c1978cb6455","issue":"2","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"7e3b1c53-5b08-4903-bf99-4187cba39778","keyword":"离子镀","originalKeyword":"离子镀"},{"id":"cb38b670-4ad9-4778-8ba6-c2055b2cd5af","keyword":"离子氮碳共渗","originalKeyword":"离子氮碳共渗"},{"id":"fbe80672-46f2-43c7-bc09-d3069ab7ead5","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"jxgccl200102009","title":"冷作模具表面硬化层的耐磨性研究","volume":"25","year":"2001"},{"abstractinfo":"为了降低冷作强化非调质钢冷镦变形的变形抗力,研究了冷作强化非调质钢MFT8在冷变形过程中的鲍辛格效应。结果表明,鲍辛格效应随冷拔减面率γ增加而提高;γ=30%时,鲍辛格效应最大,压缩真应力最小;γ>30%时,压缩真应力重新提高,这是鲍辛格效应与加工硬化共同作用的结果,即加工硬化抵消了鲍辛格效应。","authors":[{"authorName":"马晓平","id":"66a2ffb1-ea45-4d47-b6fd-0516696d9d19","originalAuthorName":"马晓平"},{"authorName":"惠卫军","id":"9712fedd-f9ef-4449-8875-4d7a2f6a96f3","originalAuthorName":"惠卫军"},{"authorName":"刘春明","id":"643564d2-848e-4320-81a6-ace2246835e1","originalAuthorName":"刘春明"},{"authorName":"于同仁","id":"e6d4acdc-a15a-4ac9-8273-e9c548954070","originalAuthorName":"于同仁"},{"authorName":"孙维","id":"053cf643-eea6-4fc7-80ec-48091936d2df","originalAuthorName":"孙维"}],"categoryName":"|","doi":"","fpage":"39","id":"83c65af1-a99d-4a7a-8ef2-9f9c323239c9","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"ad9fa614-d92e-4490-9917-316b8da9d884","keyword":"鲍辛格效应;冷变形;冷作强化;非调质钢","originalKeyword":"鲍辛格效应;冷变形;冷作强化;非调质钢"}],"language":"zh","publisherId":"1001-0963_2007_1_13","title":"冷作强化非调质钢冷变形过程中的鲍辛格效应","volume":"19","year":"2007"},{"abstractinfo":"为了降低冷作强化非调质钢冷镦变形的变形抗力,研究了冷作强化非调质钢MFT8在冷变形过程中的鲍辛格效应.结果表明,鲍辛格效应随冷拔减面率γ增加而提高;γ=30%时,鲍辛格效应最大,压缩真应力最小;γ>30%时,压缩真应力重新提高,这是鲍辛格效应与加工硬化共同作用的结果,即加工硬化抵消了鲍辛格效应.","authors":[{"authorName":"马晓平","id":"e71d647f-f1b8-4fe9-94a5-14f1c25b7ef1","originalAuthorName":"马晓平"},{"authorName":"惠卫军","id":"ea57af14-a833-493b-ba80-8af82518580c","originalAuthorName":"惠卫军"},{"authorName":"刘春明","id":"533688d7-9449-4ee8-b1e0-0e0aca5821d7","originalAuthorName":"刘春明"},{"authorName":"于同仁","id":"2730e093-0043-40e9-b6c2-6af382c85f06","originalAuthorName":"于同仁"},{"authorName":"孙维","id":"fa79f8fa-653d-449d-b661-ee710c0ab72d","originalAuthorName":"孙维"}],"doi":"","fpage":"39","id":"feeb9eda-192f-44df-bb90-2069726e8e8a","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"33646a30-f449-4ed8-878f-bee64cec0ab3","keyword":"鲍辛格效应","originalKeyword":"鲍辛格效应"},{"id":"e2666c2c-8917-41e1-9c39-6f7331a35c94","keyword":"冷变形","originalKeyword":"冷变形"},{"id":"8f05d45b-4648-4287-89eb-33382ed5b354","keyword":"冷作强化","originalKeyword":"冷作强化"},{"id":"e095ec6d-6065-48ea-b5bb-cefb903babdd","keyword":"非调质钢","originalKeyword":"非调质钢"}],"language":"zh","publisherId":"gtyjxb200701009","title":"冷作强化非调质钢冷变形过程中的鲍辛格效应","volume":"19","year":"2007"},{"abstractinfo":"研究了三种丝杠钢的接触疲劳性能。利用TEM和背散射Mossbauer谱研究了三种钢在接触疲劳前后的显微组织结构;测量了接触区中心线下显微硬度随层深的变化。结果表明:接触应力诱发A_R→M相变,并导致一定深度的冷作硬化。讨论了诱发相变和冷作硬化对接触疲劳性能的影响。","authors":[{"authorName":"张同俊","id":"b4f74491-7205-40b4-a41c-56bb47cf32ca","originalAuthorName":"张同俊"},{"authorName":"胡镇华","id":"90acbd05-35c3-41f8-95e4-0f02bc3aeb9a","originalAuthorName":"胡镇华"},{"authorName":"沈关学","id":"cbad0632-4fe9-41ae-8530-f948c60b31cc","originalAuthorName":"沈关学"},{"authorName":"崔崑","id":"11f44c71-cb22-47c3-8e46-bbc9f01370f9","originalAuthorName":"崔崑"}],"categoryName":"|","doi":"","fpage":"66","id":"a857399e-1dab-4237-a170-13510b1da1f8","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"29ad09b1-ff8f-4b04-95a4-bea874b814f5","keyword":"接触疲劳","originalKeyword":"接触疲劳"},{"id":"e64513af-47ca-46f6-bd0e-b1a5401e7c27","keyword":"induced transformation","originalKeyword":"induced transformation"},{"id":"ad26bad8-c752-46bb-b5f2-f2b6e9902419","keyword":"cold worked hardening","originalKeyword":"cold worked hardening"},{"id":"13d79af1-91c9-4beb-92fb-eed37a477cea","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_1991_2_6","title":"接触疲劳过程中的诱发相变和冷作硬化","volume":"27","year":"1991"},{"abstractinfo":"为开发冷轧工作辊用半高速钢,设计了新钢种的化学成分,研究了试验钢淬火后在回火过程中二次硬化效应及其影响因素,并初步探讨了试验钢的二次硬化机理.研究结果表明,新型半高速钢有显著的二次硬化效应,能满足冷轧工作辊的硬度要求;随Mo、V和Si等合金元素含量升高钢的二次硬度升高,随淬火温度升高钢的二次硬度出现两次峰值.二次硬化效应与残余奥氏体在回火过程中转变为马氏体和马氏体基体中析出细小弥散的Mo2C和VC有关.","authors":[{"authorName":"尹钟大","id":"c844a1c6-2af7-4be7-ae43-d16ebfb879df","originalAuthorName":"尹钟大"},{"authorName":"刘德富","id":"cf25f907-9c90-48a9-984d-0f7c3ae56488","originalAuthorName":"刘德富"},{"authorName":"徐德祥","id":"f11580dc-08ea-47a1-842d-99adcbcc6a4c","originalAuthorName":"徐德祥"},{"authorName":"孙学乐","id":"5d11bb7b-67a9-4e43-b23a-a143ac31d739","originalAuthorName":"孙学乐"},{"authorName":"李朝华","id":"efd3763b-dc2c-453d-a2ab-2c40976e0746","originalAuthorName":"李朝华"}],"doi":"","fpage":"72","id":"d4172a90-376e-4019-beac-d1ad88bc6fb2","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"d9a43928-6e37-43f2-8158-b916834253ef","keyword":"冷轧工作辊","originalKeyword":"冷轧工作辊"},{"id":"cf667926-5645-4832-9db7-9247afd48047","keyword":"半高速钢","originalKeyword":"半高速钢"},{"id":"6c1a0df8-a4cd-4e92-a82f-551f9fb3713b","keyword":"二次硬化","originalKeyword":"二次硬化"},{"id":"c96d7a10-0ce3-4804-8382-79c0d52cf11f","keyword":"合金元素","originalKeyword":"合金元素"},{"id":"c0db368c-3567-442c-ae8a-55f5e6ca767b","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"}],"language":"zh","publisherId":"gt200602018","title":"冷轧工作辊用半高速钢的二次硬化效应","volume":"41","year":"2006"},{"abstractinfo":"研究了碳化钨(WC)增强钢基复合材料经980 ℃~1240 ℃范围高温奥氏体化后的淬火硬化效应,发现此材料具有显著的淬火硬化效果(68 HRC)及良好的抗回火稳定性.研究了材料组织中大块硬质相,WC聚集区及基体显微硬度(HV0.05)的变化以及与宏观洛氏硬度之间的关系.最后,从材料科学及合金电子论角度得出了复合材料的超高硬度是来自W,Mo等含碳结构单元构成的强大马氏体基体及大体积比例分布的硬质相的贡献.","authors":[{"authorName":"杨瑞成","id":"10b5c11c-663a-4a0f-a5c0-2265b24f0396","originalAuthorName":"杨瑞成"},{"authorName":"师瑞霞","id":"97d5ebfe-7e91-4b3b-a87a-3df278543e9e","originalAuthorName":"师瑞霞"},{"authorName":"王晖","id":"5b319f1b-33cd-4c31-bc41-0911e6ddf0a8","originalAuthorName":"王晖"},{"authorName":"王军民","id":"2ea4862c-1d53-447b-bff8-8d91c86c5fcb","originalAuthorName":"王军民"}],"doi":"10.3321/j.issn:1000-3851.2002.02.008","fpage":"41","id":"b321ba28-26c7-4aa5-9cbf-42c17c15ccf9","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"7f88563e-8327-44b1-9afd-9660561bfe25","keyword":"WC/钢基复合材料","originalKeyword":"WC/钢基复合材料"},{"id":"dc72259f-55a3-4697-a99c-6959be7a0ce9","keyword":"硬质相","originalKeyword":"硬质相"},{"id":"cbb6f88e-7ceb-4444-941d-152ee43a5d0c","keyword":"钢基体","originalKeyword":"钢基体"},{"id":"2101493f-a2da-44ce-8d76-7cb9213d7b87","keyword":"奥氏体化","originalKeyword":"奥氏体化"},{"id":"3c616787-eec6-442d-905b-7aa350f4ef64","keyword":"硬化","originalKeyword":"硬化"}],"language":"zh","publisherId":"fhclxb200202008","title":"WC/钢基复合材料奥氏体化后的硬化效应及微观机理","volume":"19","year":"2002"},{"abstractinfo":"为了更好地反映激光冲击硬化的强瞬态特征及建立非傅立叶导热效应作用范围的判据,本文讨论了通用傅立叶导热定律的数学模型,推导了半无限大物体在第一类边界条件下基于非傅立叶导热定律的双曲线型偏微分方程的解析解.通过分析非傅立叶导热定律在瞬态条件下温度分布的变化过程,提出了非傅立叶导热效应的强瞬态判据.并就强瞬态导热现象对激光热处理的影响进行了讨论.指出按照非傅立叶导热定律计算能更好反映激光作用的热冲击特征.","authors":[{"authorName":"余宁","id":"f73d0ee8-2ec4-4868-94cd-8c00ed7f0c39","originalAuthorName":"余宁"},{"authorName":"胡明娟","id":"26816314-b072-4656-811e-caf224e9f74f","originalAuthorName":"胡明娟"},{"authorName":"潘健生","id":"c9b079e8-8c19-4533-b3c5-e16ba75032a3","originalAuthorName":"潘健生"},{"authorName":"顾剑锋","id":"5383839b-cca6-48f5-b120-8ae52875c7c7","originalAuthorName":"顾剑锋"}],"doi":"10.3969/j.issn.1009-6264.2001.03.007","fpage":"28","id":"a568f19a-009f-40b0-8002-e212e2ea631b","issue":"3","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5fc75c08-9009-4ebd-ad34-6c98cdd3b5b8","keyword":"非傅立叶导热效应","originalKeyword":"非傅立叶导热效应"},{"id":"dece4316-1cf0-4d97-98e7-5a881d2d54bd","keyword":"强瞬态判据","originalKeyword":"强瞬态判据"},{"id":"0828e446-9858-4ffa-aa7f-3afcc3ff75ef","keyword":"激光冲击硬化","originalKeyword":"激光冲击硬化"}],"language":"zh","publisherId":"jsrclxb200103007","title":"强瞬态非傅立叶导热效应判据与激光冲击硬化应用的探讨","volume":"22","year":"2001"},{"abstractinfo":"利用显微硬度法研究了Cu-3.2Ni-0.75Si合金不同时效组织的加工硬化效应对合金组织和性能的影响.研究表明,Cu-3.2Ni-0.75Si合金中Ni2Si相的大小和分布对合金时效硬化效应产生显著的影响,450℃×8h时效组织加工硬化效应最大,变形量为80%时,显微硬度增幅在Hv60左右;550℃×8h时效组织随变形量增加其硬度变化最平缓,变形量为80%时,显微硬度增幅仅为Hv10左右.随着变形量的增加,合金的导电率缓慢下降,80%变形后,450℃×4h、450℃×8h和500℃×8h的时效组织导电率均下降6%IACS左右,而550℃×8h时效组织的导电率变化不大.","authors":[{"authorName":"娄花芬","id":"f1e0e3f7-a57e-4e95-833f-aee19092e9ea","originalAuthorName":"娄花芬"},{"authorName":"赵冬梅","id":"9eb12a28-2610-4a4e-ac12-644942c70941","originalAuthorName":"赵冬梅"},{"authorName":"董企铭","id":"d6e12f2f-d227-4838-8f62-a70eca579236","originalAuthorName":"董企铭"},{"authorName":"刘平","id":"1ed86517-f4e1-48a9-b8a2-2056f9dd42f9","originalAuthorName":"刘平"},{"authorName":"康布熙","id":"8cb13fc1-b4e5-434a-9348-e56d2b9a5598","originalAuthorName":"康布熙"},{"authorName":"黄金亮","id":"e0d1cc77-a5eb-401f-ae3b-dfb29cbee429","originalAuthorName":"黄金亮"}],"doi":"10.3969/j.issn.1003-1545.2003.01.001","fpage":"1","id":"ffbeb14d-503d-4375-8d13-b79b0ef3f814","issue":"1","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"19718e35-9f72-42d0-b9ef-bf79b24a587e","keyword":"Cu-Ni-Si合金","originalKeyword":"Cu-Ni-Si合金"},{"id":"cdcd054c-aca8-424f-8392-adf61377417c","keyword":"时效","originalKeyword":"时效"},{"id":"f3366291-c660-4667-9146-2b29b9494b6a","keyword":"显微硬度","originalKeyword":"显微硬度"},{"id":"cef7e273-01ef-45f1-9d12-0ef1d6bd88f1","keyword":"导电率","originalKeyword":"导电率"},{"id":"3a41c37e-7ad5-47c1-af54-0f6311c4106a","keyword":"加工硬化","originalKeyword":"加工硬化"}],"language":"zh","publisherId":"clkfyyy200301001","title":"加工硬化效应对Cu-3.2Ni-0.75Si合金时效组织和性能的影响","volume":"18","year":"2003"}],"totalpage":1104,"totalrecord":11035}