欢迎登录材料期刊网

材料期刊网

高级检索

由于齿轮钢淬透性与钢的化学成分和组织结构间存在非常复杂的关系,传统方法难以建立准确的预测模型.针对这一问题,提出了一种多支持向量机的建模方法,将影响淬透性的各因素按其相关性进行分类,根据分类结果确定子模型个数和子模型的输入.同时,为保证模型具有更好的拟合精度和泛化能力,在模型的训练中采用遗传算法对支持向量机进行参数寻优.仿真结果表明,采用多支持向量机建立的钢材淬透性预测模型具有更高的预测精度.

Hardenability prediction is very difficult in the steel refining process. Based on the idea that the accuracy of model can be significantly improved by combining several sub-models, a multiple support vector machine (MSVM) based hardenability prediction model is proposed. The factors offecting hardenability are analysised and the number of sub-model and the input variables of the sub-model are determined. In order to improve the precision and generalization capability of the prediction model, genetic algorithm (GA) is adopted to optimize the parameters of MSVM. The simulated results demonstrate the efficiency of the method.

参考文献

[1] 张建 .化学成分对20CrMnTi钢淬透性影响的研究[J].特钢技术,1998,3(01):36.
[2] Field PR;Heymsfield AJ;Bansemer A .A test of ice self-collection kernels using aircraft data[J].Journal of the Atmospheric Sciences,2006(2):651-666.
[3] 崔玉珍 .国外汽车齿轮钢晶粒度的研究[J].机械工程材料,1990,14(03):10.
[4] 杜丽娜.窄淬透性带齿轮钢生产试验研究[J].太钢科技,2002(02):4.
[5] 张海,于辉,姚风臣.20CrMnTiH钢的成分控制规范[J].钢铁研究学报,2001(04):42-45.
[6] Burges C;Scholkopf B.Improving the Accuracy and Speed of Support Vector Machines[M].Cambridge,MA:The MIT Press,1997
[7] Suykens J A K;Vandewalle J .Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(03):293.
[8] 王小平;曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%