采用复合镀渗工艺,对316L不锈钢表面刷镀的两种纳米陶瓷颗粒(非晶纳米SiO_2(n-SiO_2)和纳米SiC(n-SiC)颗粒)增强的复合镀层进行双辉Ni-Cr-Mo-Cu多元共渗处理,成功地在316L不锈钢表面制备了纳米颗粒增强Ni基合金层.利用XRD、SEM和TEM对两种复合镀渗层的微观组织进行观察,采用极化曲线、电化学阻抗谱(EIS)和冲刷腐蚀试验对两种复合镀渗层的耐蚀性和耐冲蚀性能进行研究.对两种颗粒增强的复合镀渗层的微观组织分析结果表明:在双辉多元共渗工艺(1000 ℃)条件下,电刷镀含n-SiO_2颗粒的复合镀渗层中的SiO_2颗粒仍保持非晶态;而电刷镀含n-SiC颗粒的复合镀渗层中的SiC颗粒已完全分解并与基体合金元素发生反应,导致在晶内析出三元硅化物Cr_(6.5)Ni_(2.5)Si和沿晶界析出碳化物Cr_(23)C_6.在3.5%NaCl(质量分数, 下同)溶液中的电化学腐蚀实验结果表明:SiO_2颗粒增强的复合镀渗层存在明显的钝化区,点蚀电位和维钝电流密度与Ni基合金渗层的十分接近,而电刷镀含SiC颗粒增强的复合镀渗层处于活化状态,但其耐蚀性能仍略强于不锈钢;两种复合镀渗层的EIS图谱均呈现单容抗弧特征,与Ni基合金渗层相比,SiO_2颗粒增强的复合镀渗层的容抗弧幅值略微减少,而SiC颗粒增强的复合层的容抗弧幅值明显下降,但仍略高于316L不锈钢.在液/固两相流(10%HCl+10%石英砂)条件下的冲刷腐蚀实验结果表明:SiO_2颗粒增强的复合镀渗层具有最佳的耐冲蚀性能,而316L不锈钢的耐冲蚀性能最差.
Two kinds of nanoparticles reinforced with Ni-based composite alloying layer were prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO_2 and nano-SiC were firstly predeposited by brush plating. The microstructure of the two kinds of nanoparticles was investigated by XRD, SEM and TEM. Their corrosion resistance and erosion-corrosion resistance were analyzed by Tafel Plot, electrochemical impedance spectroscopy (EIS) and erosion-corrosion tests. The results indicate that under the alloying temperature (1000 oC) condition, the amorphous nano-SiO_2 particles still kept the amorphous structure, whereas the nano-SiC particles was decomposed and Ni and Cr reacted with SiC to form Cr_(6.5)Ni_(2.5)Si and Cr_(23)C_6. The corrosion test results indicate that the alloying layer reinforced by amorphous nano-SiO_2 particles display passivation, and the pitting potential (Epit) and passive current (ip) are slightly smaller than that of single alloying layer, whereas the Ni-based alloying layer reinforced by nano-SiC particles is active in 3.5% NaCl solution (mass fraction, similarly hereinafter). The results of impedance spectroscopy of measured samples show that the Nyquist plots of Ni-based alloying layers consisted of single capacitance arc. Compared with the single alloying layer, the capacitance arc of the amorphous nano-SiO_2 particles reinforced by Ni-based composite alloying layer is slightly decreased. The capacitance arc of alloying layer reinforced by nano-SiC particle is lower than that of the single alloying layer and nano-SiO_2 particles reinforced by Ni-based composite alloying layer, but still higher than that of 316L substrate. The erosion-corrosion results indicate that the alloying layer reinforced by amorphous nano-SiO_2 particles show the highest erosive-corrosive resistance of the three alloying layers, while the 316L stainless steel is the worst.
参考文献
[1] | 姜晓霞;李诗卓;李薯.金属的腐蚀磨损[M].北京:化学工业出版社,2003:1. |
[2] | Bogdan Szczygiel;Malgorzata Kotodziej .Composite Ni/Al{sub}2O{sub}3 coatings and their corrosion resistance[J].Electrochimica Acta,2005(20):4188-4195. |
[3] | Saxena M;Modi O P;Prasad B K et al.[J].Wear,1993,169:119. |
[4] | Vaidya R U;Butt D P;Hersman L E et al.[J].Corrosion,1997,53:136. |
[5] | Gundersen R;Nisancioglu K .[J].Corrosion,1990,46:279. |
[6] | Trzaskoma P P .[J].Corrosion,1990,46:402. |
[7] | Yu S Y;Ishi H;Chuang T H .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,27:2655. |
[8] | Das S;Mondal D P;Dasgupta R et al.[J].Wear,1999,236:259. |
[9] | Espallargas N;Berget J;Guilemany JM;Benedetti AV;Suegama PH .Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance[J].Surface & Coatings Technology,2008(8):1405-1417. |
[10] | 徐江,谢锡善,徐重,董世运,徐滨士.双辉多元共渗与电刷镀复合表面耐蚀渗镀层的研究[J].金属学报,2002(10):1074-1078. |
[11] | Merk N .[J].Journal of Materials Science Letters,1995,14:592. |
[12] | Park JS;Perepezko JH;Landry K .Kinetic control of silicon carbide/metal reactions[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(2):279-286. |
[13] | 徐亚伟,王华明.激光熔化沉积γ/Mo2Ni3Si金属硅化物合金的腐蚀行为[J].稀有金属材料与工程,2007(04):660-664. |
[14] | Mansfeld F;Zhang G;Chen C.[J].Plating and Surface Finishing,1997(12):72. |
[15] | Heidemeyer J .[J].Wear,1981,66:379. |
[16] | 陈鑫,韩敏芳,王忠利,蒋先锋.铬基合金连接体材料在固体氧化物燃料电池中的应用[J].稀有金属材料与工程,2007(z2):642-644. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%