欢迎登录材料期刊网

材料期刊网

高级检索

针对钢铁铸坯表面检测及缺陷识别问题,从图像处理及机器学习角度,提出一种基于Adaboost算法的进行钢铁铸坯表面缺陷检测,并结合Gabor小波和Canny边缘检测进行处理,排除伪缺陷的新方法.大量试验表明:该方法能够较好地检出具有缺陷的钢铁铸坯,且具有准确率高、速度快、易实施等优点.

参考文献

[1] Freund Y;Schapire R E.A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[A].Barcelona:[s.n.],1995:23.
[2] Viola P;Jones M.Rapid Object Detection Using a Boosted Cascade of Simple Features[A].Kauai,USA:IEEE Press,2001:511.
[3] WANG Y;SUN Y;L(U) P.Detection of Line Weld Defects Based on Multiple Thresholds and Support Vector Machine[J].NDT & E International,2005(05):4.
[4] H.I. Shafeek;E.S. Gadelmawla;A.A. Abdel-Shafy .Automatic inspection of gas pipeline welding defects using an expert vision system[J].NDT & E international: Independent nondestructive testing and evaluation,2004(4):301-307.
[5] 刘清坤,阙沛文,宋寿鹏.基于支持向量机的石油管线缺陷识别方法研究[J].传感器技术,2005(03):30-31,34.
[6] 郭捷,施鹏飞.基于颜色和纹理分析的车牌定位方法[J].中国图象图形学报A辑,2002(05):472-476.
[7] Jacobsen C;Zscherpel U;Perner P.A Comparison Between Neural Networks and Decision Trees[A].New York:springer-verlag,1999:144.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%