针对钢铁铸坯表面检测及缺陷识别问题,从图像处理及机器学习角度,提出一种基于Adaboost算法的进行钢铁铸坯表面缺陷检测,并结合Gabor小波和Canny边缘检测进行处理,排除伪缺陷的新方法.大量试验表明:该方法能够较好地检出具有缺陷的钢铁铸坯,且具有准确率高、速度快、易实施等优点.
参考文献
[1] | Freund Y;Schapire R E.A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[A].Barcelona:[s.n.],1995:23. |
[2] | Viola P;Jones M.Rapid Object Detection Using a Boosted Cascade of Simple Features[A].Kauai,USA:IEEE Press,2001:511. |
[3] | WANG Y;SUN Y;L(U) P.Detection of Line Weld Defects Based on Multiple Thresholds and Support Vector Machine[J].NDT & E International,2005(05):4. |
[4] | H.I. Shafeek;E.S. Gadelmawla;A.A. Abdel-Shafy .Automatic inspection of gas pipeline welding defects using an expert vision system[J].NDT & E international: Independent nondestructive testing and evaluation,2004(4):301-307. |
[5] | 刘清坤,阙沛文,宋寿鹏.基于支持向量机的石油管线缺陷识别方法研究[J].传感器技术,2005(03):30-31,34. |
[6] | 郭捷,施鹏飞.基于颜色和纹理分析的车牌定位方法[J].中国图象图形学报A辑,2002(05):472-476. |
[7] | Jacobsen C;Zscherpel U;Perner P.A Comparison Between Neural Networks and Decision Trees[A].New York:springer-verlag,1999:144. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%