欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-3500热模拟实验机,分析6013铝合金在变形温度613 ~773 K、应变速率10-3~ 10 s-1和工程变形量10%~ 60%条件下的平面热压缩变形流变应力演化规律,求解热变形本构方程,建立热加工图,探讨其热变形行为机理.结果表明,6013铝合金的流变软化机制以动态回复为主;采用包含关于变形温度函数的幂函数本构方程可较好的预测其流变行为,与实测值的平均相对误差仅为6.631%;确定了单道次大应变热轧成型最佳工艺参数区间:673 K<T<773 K且5×10-3 s-1<ε<10-1s-1和多道次热轧最佳工艺参数区间:633 K<T<733 K且10-1s-1<ε<1 s-1.

参考文献

[1] Pourahmad P;Abbasi M .Materials flow and phase transformation in friction stir welding of A16013/Mg[J].Transactions of Nonferrous Metals Society of China,2013,23(05):1253-1261.
[2] Xu WL;Yue TM;Man HC;Chan CP .Laser surface melting of aluminium alloy 6013 for improving pitting corrosion fatigue resistance[J].Surface & Coatings Technology,2006(16/17):5077-5086.
[3] M.R.W.S. Abdala;J.C. Garcia de Blas;C. Barbosa .Thermoelectrical power analysis of precipitation in 6013 aluminum alloy[J].Materials Characterization,2008(3):271-277.
[4] A.S. Taylor;P. Cizek;P.D. Hodgson .Orientation dependence of the substructure characteristics in a Ni-30Fe austenitic model alloy deformed in hot plane strain compression[J].Acta materialia,2012(4):1548-1569.
[5] Gelin J C;Ghouati O;Shahani R .Modeling the plane strain compression test to obtain constitutive equations of aluminum alloys[J].International Journal of Mechanical Sciences,1994,36(09):773-796.
[6] 傅高升,陈贵清.3003铝合金热变形机制及其加工图[J].材料热处理学报,2013(02):114-119.
[7] 张毅,刘平,田保红,陈小红,贾淑果,刘勇,任凤章.基于热加工图的Cu-Ni-Si-P合金的高温热变形行为[J].材料热处理学报,2012(11):18-23.
[8] Ahamed, H.;Senthilkumar, V..Hot deformation behavior of mechanically alloyed Al6063/0.75Al _2O _3/0.75Y _2O _3 nano-composite-A study using constitutive modeling and processing map[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:349-359.
[9] Wu, B.;Li, M.Q.;Ma, D.W..The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:79-87.
[10] Li, H.Z.;Wang, H.J.;Liang, X.P.;Liu, H.T.;Liu, Y.;Zhang, X.M. .Hot deformation and processing map of 2519A aluminum alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(3):1548-1552.
[11] Cepeda-Jiménez, C.M.;Ruano, O.A.;Carsí, M.;Carre?o, F..Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:530-539.
[12] Shi, C.;Mao, W.;Chen, X.-G..Evolution of activation energy during hot deformation of AA7150 aluminum alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:83-91.
[13] Luo, J.;Li, M.Q.;Wu, B..The correlation between flow behavior and microstructural evolution of 7050 aluminum alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011:559-564.
[14] Klepaczko J R .A practical stress-strain-strain rate-temperature constitutive relation of the power form[J].Journal of Mechanical Working and Technology,1987,15(02):143-165.
[15] 朱振华 .5A30铝合金高温压缩变形行为的研究[D].广东工业大学,2011.
[16] Murty S.V. S. N.;Rao B.N. .Instability criteria for hot deformation of materials[J].International Materials Reviews,2000(1):15-26.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%