欢迎登录材料期刊网

材料期刊网

高级检索

以4200 mm轧机轧制71块钢板的实测数据为基础,利用Matlab神经网络工具箱,分别建立了轧制变形区的应力状态系数与轧前厚度、轧后厚度及轧辊直径对应关系的Elman神经网络预测模型和RBF神经网络预测模型。结果表明,所建立的两种网络模型均建立了金属应力状态系数输入和输出关系,RBF神经网络模型比Elman网络模型数据稳定,性能更优,实现了与实测结果的高度拟合。并得出不同轧辊直径对神经网络模型精度的影响规律,对轧制工艺规程的制定提出了合理建议。

According to the experimental data obtained from 71 steel plates rolled in 4200 rolling mill, Elman and RBF neural network prediction models are established for the relationship between stress state coefficient and thickness before rolling, and the relationship between the thickness after rolling and diameter of roller based on Matlab neural network toolbox. The results indicate that the relationship between input and output of stress state coefficient is correctly built by the two neural networks. RBF model′s performance is better than that of Elman model and the predicted data is highly close to the actual data. Influencing rules of model′s accuracy are obtained when diameter of roller differs. The reasonable advice on drawing up the process specifications is proposed.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%