采用三元体系半无限扩散偶的高斯方法,求解了SiC/Ti6AL4V复合材料界面反应层中相关元素的扩散系数,计算的浓度分布和实测值一致.碳原子通过反应层的扩散服从间隙扩散机制,硅原子的扩散为空位扩散机制.由于碳扩散的振动能最低并且跃迁距离最短,而供硅扩散的空位不足,碳和硅在反应产物TiCx中具有最小的内禀扩散系数,分别为8.9403×10-16和4.7747×10-16 m2·s-1.研究表明,在SiC/Ti6AL4V复合材料界面反应的过程中,反应元素通过反应层TiCx的扩散是一个主要的控制步骤.
The diffusion coefficients of the relative reactive elements in interfacial reaction layer of SiC/Ti6A14V composite were solved by use of Guass method in a semi-infinite diffusion couple for ternary systems, and the concentration distribution of diffusion elements calculated was well fitted to the measurements. C atoms diffuse through the reaction layer by interstitial diffusion mechanism, while Si atoms diffuse through the reaction layer by vacancy diffusion mechanism. C and Si atoms have the minimum intrinsic diffusion coefficients in TiCx layer, which are 8.9403×10-16 and 4.7747×10-16 m2·s-1, respectively, because of the lowest molecular vibrancy energy and transition distance for C atoms and the insufficient vacancy for Si atoms. The reactive element diffusing through the TiCx layer is a dominant determining step in interfacial reaction progress of SiC/Ti6Al4V composite.
参考文献
[1] | 杨延清,马志军,李健康,吕祥鸿,艾云龙.SiCf/Superα2复合材料的界面反应及对性能的影响[J].稀有金属材料与工程,2006(01):43-46. |
[2] | Kirkaldy J S .[J].Canadian Journal of physics,1958,36:899. |
[3] | Kirkaldy J S .[J].Canadian Journal of physics,1958,36:917. |
[4] | Dayananda M A;Kim C W .[J].Metallurgical Transactions,1979,10A:1333. |
[5] | Kim C W;Dayananda M A .[J].Metallurgical Transactions,1983,14A:857. |
[6] | Sisson R D;Dayananda M A .[J].Metallurgical Transactions,1972,3:647. |
[7] | Nesbitt J A;Hechel R W .[J].Metallurgical Transactions,1987,10A:2087. |
[8] | Nesbitt J A;Hechel R W .[J].Metallurgical Transactions,1987,10A:2061. |
[9] | Randich E;Goldstein J E .[J].Metallurgical Transactions,1975,6A:1553. |
[10] | Purdy G R;Weichert D H;Kirkaldy J S .[J].Transactions of the Metallurgical Society of AIME,1964,230:1025. |
[11] | Thompson M S;Morral J E .[J].Acta Metallurgica,1986,34:339. |
[12] | Jan C H;Swenson D;Zheng X Y et al.[J].Acta Metallurgica Et Materialia,1991,39:303. |
[13] | Jan C H;Swenson D;Chang Y A.In Fundamental and Applications of Ternary Diffiision[M].Pergamon:Pergamon Press,1990:127. |
[14] | 吕祥鸿 .SiC连续纤维增强Ti基复合材料的界面扩散行为研究[D].西北工业大学,2006. |
[15] | Sarian S .[J].Journal of Applied Physics,1969,40(09):3515. |
[16] | Van Loo F J J;Bastin G F .[J].Metallurgical Transcaction A,1989,20A:401. |
[17] | Murray J L.Monograph Series on Alloy Phase Diagrams:Phase Diagrams of Binary Titanium Alloys[M].Ohio:ASM,2000:44073. |
[18] | Tang K;Wang C A;Yong H et al.[J].Journal of Crystal Growth,2001,333:130. |
[19] | Williams J J;Ye Y Y;Kramer M J et al.[J].Intermetallics,2000,8:937. |
[20] | 秦善.晶体学基础[M].北京:北京大学出版社,2004:9. |
[21] | Fan Z;Gao Z X;Cantor B .[J].Composited Part A,1997,28A:131. |
[22] | 孙振岩;刘春明.合金中的扩散与相变[M].Shenyang:Northeastern Unversity Press,2002 |
[23] | 朱艳 .SiC纤维增强Ti基复合材料界面反应研究[D].西北工业大学,2003. |
[24] | Yang Y Q;Dudek H J;Kumpfert J .[J].Composited Part A,1998,29A:1235. |
[25] | 曹楚南;吴荫顺.腐蚀电化学[M].北京:化学工业出版社,1994 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%