目的构建骨形成蛋白2(Bone morphogenetic proteins2,BMP-2)基因修饰的β磷酸三钙(βtricalcium phosphate,β-TCP)/胶原复合支架材料,探讨其体内修复大鼠临界颅骨缺损的效果,评价其作为骨缺损修复材料的性能.方法 制备纳米级多孔3-TCP/胶原支架,并负载100μg BMP-2质粒DNA形成基因修饰的支架材料.将24只成年雄性SD大鼠随机分为BMP-2基因修饰的β-TCP/胶原支架组(n=8),3-TCP/胶原支架组(n=8),空白组(n=8).在大鼠颅骨顶部建立两个直径5mm的临界性骨缺损,植入材料后6周、12周取样本大体观察,组织学观察,免疫组织化学检测,并进行骨组织测量分析.结果 组织学观察可见12周时,材料已完全降解.BMP-2基因修饰支架组6周时,骨缺损区成骨活跃形成编织骨;12周时,骨缺损已基本愈合,新生骨组织逐渐成熟呈板层状,与宿主骨形成骨性连接.而单纯支架组6周时,骨缺损中心区为少量岛状骨组织;12周时,新生骨组织连接呈片状,骨缺损未完全愈合.免疫组化检测显示:6周和12周时,BMP-2基因修饰支架组中BMP-2表达均强于单纯支架组和空白组.骨组织形态计量分析显示BMP-2基因修饰支架组成骨质量和成骨效率明显高于单纯支架组和空白组(P<0.05).结论 BMP 2基因修饰的β-TCP/胶原复合材料具有良好的生物相容性,骨诱导和骨传导性佳,是很有潜力的新型骨缺损修复材料.
参考文献
[1] | Giannoudis PV;Dinopoulos H;Tsiridis E .Bone substitute:an update[J].Injury.British Journal of Accident Surgery,2005,36:S20-S27. |
[2] | Takahashi Y;Yamamoto M;Tabata Y .Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate[J].Biomaterials,2005(23):4856-4865. |
[3] | 牟善松,毛萱,石海涛,汤顺清.骨组织工程支架-多孔β-磷酸三钙陶瓷的制备与性能[J].材料科学与工程学报,2003(04):569-571. |
[4] | Chao Zou,W.W.X.D .Preparation and characterization of porous b-tricalcium phosphate/collagen composites with an integrated structure[J].Biomaterials,2005,26:5276-5284. |
[5] | Brkovic,B.M.B.;Prasad,H.S.;Rohrer,M.D.;Konandreas,G.;Agrogiannis,G.;Antunovic,D.;Sándor,G.K.B. .Beta-tricalcium phosphate/type I collagen cones with or without a barrier membrane in human extraction socket healing: Clinical, histologic, histomorphometric, and immunohistochemical evaluation[J].Clinical oral investigations,2012(2):581-590. |
[6] | Lu K;Zeng D;Zhang Y;Xia L;Xu L;Kaplan DL;Jiang X;Zhang F .BMP-2 gene modified canine bMSCs promote ectopic bone formation mediated by a nonviral PEI derivative.[J].Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society,2011(6):1829-1839. |
[7] | 范丽,卢岩,林慧平,姚航平,林军.骨形成蛋白-2转染MG-63细胞增加其对壳聚糖膜的粘附[J].材料科学与工程学报,2011(06):911-915,897. |
[8] | Sawyer AA;Song SJ;Susanto E;Chuan P;Lam CX;Woodruff MA;Hutmacher DW;Cool SM .The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2.[J].Biomaterials,2009(13):2479-2488. |
[9] | Luvizuto ER;Tangl S;Zanoni G;Okamoto T;Sonoda CK;Gruber R;Okamoto R .The effect of BMP-2 on the osteoconductive properties of beta-tricalcium phosphate in rat calvaria defects.[J].Biomaterials,2011(15):3855-3861. |
[10] | Schmitz JP;Hollinger JO.The critical size defect as an experimental model for craniomandibulofacial nonunions[J].Clinical Orthopaedics and Related Research,1986(205):299-308. |
[11] | Kasper FK;Young S;Tanahashi K;Barry MA;Tabata Y;Jansen JA;Mikos AG .Evaluation of bone regeneration by DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in a critical-sized calvarial defect.[J].Journal of biomedical materials research, Part A,2006(2):335-342. |
[12] | Hartman GA;Arnold RM;Mills MP;Cochran DL;Mellonig JT .Clinical and histologic evaluation of anorganic bovine bone collagen with or without a collagen barrier.[J].The International journal of periodontics & restorative dentistry,2004(2):127-135. |
[13] | Silva GA;Ducheyne P;Reis RL .Materials in particulate form for tissue engineering.1.Basic concepts[J].J Tissue Eng Regen Med,2007,1(01):4-24. |
[14] | Urist MR .Bone formation by autoinduction[J].Science,1965,150(3698):893-899. |
[15] | Chen D;Zhao M;Mundy GR .Bone morphogenetic proteins[J].Growth Factors,2004,22(04):233-241. |
[16] | Shimer AL;Oner FC;Vaccaro AR .Spinal reconstruction and bone morphogenetic proteins:open questions[J].Injury.British Journal of Accident Surgery,2009,40(03):32-38. |
[17] | Nie H;Ho ML;Wang CK;Wang CH;Fu YC .BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice.[J].Biomaterials,2009(5):892-901. |
[18] | Mizuno M;Fujisawa R;Kuboki Y .Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction.[J].Journal of Cellular Physiology,2000(2):207-213. |
[19] | Wegman F;Bijenhof A;Schuijff L;Oner FC Dhert WJ Alblas J .Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo[J].European Cells and Materials,2011,15(21):230-242. |
[20] | Bisht S;Bhakta G;Mitra S;Maitra A .pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery.[J].International Journal of Pharmaceutics,2005(1):157-168. |
[21] | T.Welzel;I.Radtke;W.Meyer-Zaika;R.Heumann;M.Epple .Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2004(14):2213-2217. |
[22] | Liu T;Tang A;Zhang G;Chen Y;Zhang J;Peng S;Cai Z .Calcium phosphate nanoparticles as a novel nonviral vector for efficient transfection of DNA in cancer gene therapy.[J].Cancer biotherapy and radiopharmaceuticals,2005(2):141-149. |
[23] | Cao X;Deng W;Wei Y;Su W Yang Y Wei Y Yu J Xu X .Encapsulation of plasmid DNA in calcium phosphate nanoparticles:stem cell uptake and gene transfer efficiency[J].Int J Nanomedicine,2011,6:3335-3349. |
[24] | Keeney M;van den Beucken JJ;van der Kraan P .The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165).[J].Biomaterials,2010(10):2893-2902. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%