欢迎登录材料期刊网

材料期刊网

高级检索

人工神经网络是近年发展起来的模拟人脑生物过程的具有人工智能的系统,在钢铁材料研究中有着广阔的应用前景.人工神经网络可根据钢的化学成分和/或加工工艺参数对微观组织、相变温度和时间及性能等做出快速准确预测,并可用于研究钢的上述各影响因素间的相互关系.研究人工神经网络也可用于钢的冶金过程及钢的表面处理过程工艺参数的预测及控制.

参考文献

[1] 陈蕴博,岳丽杰.机械工程材料优选方法的研究现状[J].机械工程学报,2007(01):19-24.
[2] 由伟,白秉哲,方鸿生,谢锡善.用人工神经网络模型预测钢的奥氏体形成温度[J].金属学报,2004(11):1133-1137.
[3] 侯福均,吴祈宗.基于人工神经网络的50CrMoA钢应力强度因子幅度门槛值△Kth的预报[J].中国铁道科学,2003(03):130-132.
[4] 李琪,由伟,方鸿生,白秉哲.用人工神经网络预测钢的贝氏体开始转变临界冷却速度[J].金属热处理,2004(01):58-62.
[5] 杜美华,程国建,李中亚.基于广义回归神经网络的油气层识别模型[J].石油矿场机械,2007(11):1-4.
[6] Col M;Ertunc H M;Yilmaz M .An artificial neural network model for toughness properties in microalloyed steel in consideration of industrial production conditions[J].Materials & Design,2007,28:488.
[7] Xu L J et al.Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks[J].Materials & Design,2007,28:1425.
[8] Xu L J;Xing J D;Wei S Z et al.Optimisation of chemical composition of high speed steel with high vanadium content for abrasive wear using an artificial neural network[J].Materials & Design,2007,28:1031.
[9] Dobrzański L A et al.Methodology of the mechanical pro-perties prediction for the metallurgical products from the engineering steels using the artificial intelligence methods[J].Journal of Materials Processing Technology,2005,164-165:1500.
[10] Mandal S;Sivaprasad PV;Venugopal S;Murthy KPN;Raj B .Artificial neural network modeling of composition-process-property correlations in austenitic stainless steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):571-580.
[11] Haque M E;Sudhakar K V .Prediction of corrosion-fatigue behavior of DP steel through artificial neural network[J].International Journal of Fatigue,2001,23:1.
[12] Haque M E;Sudhakar K V .ANN back-propagation prediction model for fracture toughness in microalloy steel[J].International Journal of Fatigue,2002,24:1003.
[13] Ai JH.;Jiang X.;Gao HJ.;Hu YH.;Xie XS. .Artificial neural network prediction of the microstructure of 60Si2MnA rod based on its controlled rolling and cooling process parameters[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):318-322.
[14] H. Mirzadeh;A. Najafizadeh .Correlation between processing parameters and strain-induced martensitic transformation in cold worked AISI 301 stainless steel[J].Materials Characterization,2008(11):1650-1654.
[15] Dobrzański L A;Trzaska J .Application of neural networks for prediction of critical values of temperatures and time of the supercooled austenite transformations[J].Journal of Materials Processing Technology,2004,155-156:1950.
[16] You W;Xu W H;Bai B Z et al.Materialometrical approach of predicting the austenite formation temperatures[J].Materials Science and Engineering,2006,A419:276.
[17] YOU Wei,LIU Ya-xiu,BAI Bing-zhe,FANG Hong-sheng.RBF-Type Artificial Neural Network Model Applied in Alloy Design of Steels[J].钢铁研究学报(英文版),2008(02):87-90.
[18] 陶子玉,姜茂发,刘承军.基于改进人工神经网络的LF钢水终点温度预报[J].特殊钢,2006(06):21-23.
[19] 曾燕飞,李小伟.基于BP神经网络的高炉铁水硅含量预测模型研究[J].微计算机信息,2006(19):291-293.
[20] Genel Kenan et al.Boriding response of AISI W1 steel and use of artificial neural network for prediction of borided layer properties[J].Surface and Coatings Technology,2002,160:38.
[21] 宋来洲,高志明,宋诗哲.人工神经网络优化碳钢表面TiO2修饰膜制备工艺[J].中国腐蚀与防护学报,2001(02):101-105.
[22] 潘清跃;宋仁国;张奇志 等.基于人工神经网络-遗传算法的1Cr18Ni9Ti钢激光表面熔凝工艺优化[J].材料研究学报,1998,12(03):251.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%