采用微弧氧化技术在钛合金表面制备了陶瓷膜层.利用正交试验得到了不同工艺参数(电流密度、频率、占空比和氧化时间)与膜层性能(厚度、粗糙度和显微硬度)数据,借助MATLAB软件建立了由4个输入向量、13个隐含层节点和3个输出向量组成的BP人工神经网络模型.该网络能较好地掌握工艺参数与膜层性能之间的内在规律,并能高精度预测膜层的性能,3个性能参数的平均预测误差分别为4.1%、4.2%和2.4%,最大预测误差分别为8.2%、8.6%和3.1%.
参考文献
[1] | 钟涛生,蒋百灵,李均明.微弧氧化技术的特点、应用前景及其研究方向[J].电镀与涂饰,2005(06):47-50. |
[2] | A. L. Yerokhin;X. Nie;A. Leyland;A. Matthews;S. J. Dowey .Plasma electrolysis for surface engineering[J].Surface & Coatings Technology,1999(2/3):73-93. |
[3] | 王丽,付文,陈砺.等离子体电解氧化技术及机理研究进展[J].电镀与涂饰,2012(04):48-52. |
[4] | Tsunekawa, S.;Aoki, Y.;Habazaki, H. .Two-step plasma electrolytic oxidation of Ti-15V-3Al-3Cr-3Sn for wear-resistant and adhesive coating[J].Surface & Coatings Technology,2011(19):4732-4740. |
[5] | Wen, L.;Wang, Y.;Jin, Y.;Liu, B.;Zhou, Y.;Sun, D..Microarc oxidation of 2024 Al alloy using spraying polar and its influence on microstructure and corrosion behavior[J].Surface & Coatings Technology,2013:92-99. |
[6] | 申恒梅,毕四富,白清友,曹立新,刘海萍.氧化电压和时间对Ti75钛合金微弧氧化膜性能的影响[J].电镀与涂饰,2013(06):36-39. |
[7] | YANG W;WANG A Y;JIANG B L .Corrosion resistance of composite coating on magnesium alloy using combined microarc oxidation and inorganic sealing[J].Transactions of Nonferrous Metals Society of China,2012,22(supplement 3):s760-s763. |
[8] | VRABEL M;MANKOVA I;BENO J et al.Surface roughness prediction using artificial neural networks when drilling Udimet 720[J].Procedia Engineering,2012,48:693-700. |
[9] | Gianluca Buffa;Livan Fratini;Fabrizio Micari .Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloys[J].Journal of manufacturing processes,2012(3):289-296. |
[10] | Erkam Guresen;Gulgun Kayakutlu;Tugrul U. Daim .Using artificial neural network models in stock market index prediction[J].Expert Systems with Application,2011(8):10389-10397. |
[11] | 朱凯;王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2010:193-224. |
[12] | 傅荟璇;赵红.MATLAB神经网络应用设计[M].北京:机械工业出版社,2010:83-91. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%