欢迎登录材料期刊网

材料期刊网

高级检索

随着工业的发展,富Cr合金在H2-H2O气氛下的氧化行为越来越常见.与空气等氧化性气氛相比,在H2-H2O气氛中,富Cr合金形成的氧化膜的抗剥落性能、形貌、合金的氧化速率以及活性元素对其影响等都有较大区别,本文从以上几个方面综述了H2-H2O气氛下富Cr合金氧化行为的研究进展.

参考文献

[1] Price L E,Thomas G J.The tarnishing of silver and silver alloys and its prevention[J].J.Inst.Met.,1938,63(2):29.
[2] Hirashima M.Selective oxidation of silver-magnesium alloys in water vapor[J].J.Phys.Soc.Jpn.,1955,10(12):1055.
[3] Sanderson M D,Scully J C.The high-temperature oxidation of some oxidation-resistant copper-based alloys[J].Oxid.Met.,1971,3(1):59.
[4] Nakayama T,Kaneko K,Higashi S.Effects of Ce upon the selective oxide films on a 3%Si-Fe alloy[J].Corros.Sci.,1970,10(7):545.
[5] Sanderson M D,Scully J C.Protective oxide formation on Cu-7.5Al-2Si alloy[J].Metall.Mater.Trans.B,1975,1(5):1273.
[6] 穆道斌,程辉,冷文波等.金属-玻璃封接中4J29可伐合金的氧化研究[J].新技术新工艺,2003,(10):38.
[7] Mantel M.Effect of double oxide layer on metal-glass sealing[J].J.Non-Cryst.Solids,2000,273(1-3):294.
[8] 安白,马莒生,唐祥云.Ni42Cr6Fe合金在高温湿氢中的氧化膜组织结构及生长过程研究[J].金属学报,1995,31(4):173.
[9] Luan T C,Eckert R E,Albright L F.Gaseous pretreatment of high-alloy steels used in ethylene furnaces:pretreatment of Incoloy 800[J].Ind.Eng.Chem.Res.,2003,42(20):4741.
[10] Millward G R,Evans H E,Aindow M,et al.The influence of oxide layers on the initiation of carbon deposition on stainless steel[J].Oxid.Met.,2001,56(3):231.
[11] Geng S J,Zhu J H,Lu Z G.Investigation on haynes 242alloy as SOFC interconnect in simulated anode environment[J].Electrochem.Solid State Lett.,2006,9(4):211.
[12] Jian P,Jian L,Bing H,et al.Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere[J].J.Power Sources,2006,158(1):354.
[13] Zurek J,Young D J,Essuman E,et al.Growth and adherence of chromia based surface scales on Ni-base alloys in high-and low-PO2 gases[J].Mater.Sci.Eng.,2008,A477(1):259.
[14] Holmen A,Lindvaag O A,Trimm D L.Coke formation during steam cracking of hydrocarbons.Part 2.Effect of preoxidation and prereduction of the reactor surface[J].J.Chem.Technol.Biotechnol.,1985,35(7):358.
[15] Essuman E,Meier G H,Zurek J,et al.Protective and nonprotective scale formation of NiCr alloys in water vapour containing high-and low-PO2 gases[J].Corros.Sci.,2008,50(6):1753.
[16] Mikkelsen L,Linderoth S.High temperature oxidation of Fe-Cr alloy in O2-H2-H2O atmospheres:microstructure and kinetics[J].Mater.Sci.Eng.,1995,A361(8):198.
[17] Burton B.A theoretical upper limit to Coble creep strain resulting from concurrent grain growth[J].J.Mater.Sci.,1993,28(18):4900.
[18] Hansson A N,Somers M A J.Influence of the oxidation environment on scale morphology and oxidation rate of Fe-22Cr[J].Mater.High Temp.,2005,3(4):223.
[19] Liu K,Luo J,Johnson C,et al.Conducting oxide formation and mechanical endurance of potential solid-oxide fuel cell interconnects in coal syngas environment[J].J.Power Sources,2008,183(1):247.
[20] Othman N K,Othman N,Zhang J,et al.Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres[J].Corros.Sci.,2009,193(1):136.
[21] Raynaud G M,Rapp R A.In-situ observation of whiskers,pyramids and pits during the high-temperature oxidation of metals[J].Oxid.Met.,1984,21(1):89.
[22] Hansel M,Quadakkers W J,Young D J.Role of water vapor in chromia-scale growth at low oxygen partial pressure[J].Oxid.Met.,2003,59(3-4):285.
[23] 骆丽杰,童张法,莫丽玢等.气氛对MnCr2O4尖晶石纳米线生长的影响[J].高等学校化学学报,2009,30(4):647.
[24] Polman E A,Fransen T,Gellings P J.Oxidation kinetics of chromium and morphological phenomena[J].Oxid.Met.,1989,32(5):433.
[25] Rabbani F,Ward L P,Strafford K N.A comparison of the growth kinetics and scale morphology for three superalloys at 930 ℃ in air and low PO2 environments[J].Oxid.Met.,2000,54(1):139.
[26] Swaminathan S,Spiegel M.Effect of alloy composition on the selective oxidation of ternary Fe-Si-Cr,Fe-Mn-Cr model alloys[J].Surf.Interface Anal.,2008,40(3-4):268.
[27] Liu Y.Performance evaluation of several commercial alloys in a reducing environment[J].J.Power Sources,2008,179(1):286.
[28] Brylewski T,Nanko M,Maruyama T,et al.Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell[J].Solid State Ionics,2001,143(2):131.
[29] Li H,Zheng Y,Benum L W,et al.Carburization behaviour of Mn-Cr-O spinel in high temperature hydrocarbon cracking environment[J].Corros.Sci.,2009,51(10):2336.
[30] Brylewski T,Maruyama T,Nanko M,et al.TG measurements of the oxidation kinetics of Fe-Cr alloy with regard to its application as a separator in SOFC[J].J.Therm.Anal.Calorim.,1999,55(2):681.
[31] England D M,Virkar A V.Oxidation kinetics of some nickel-based superalloy foils in humidified hydrogen and electronic resistance of the oxide scale formed part Ⅱ[J].J.Electrochem.Soc.,2001,148(4):A330.
[32] Hansson A N,Somers M A J.Influence of the oxidation environment on scale morphology and oxidation rate of Fe-22Cr[J].Mater.High Temp.,2005,22(3-4):223.
[33] Polman E A,Fransen T,Gellings P J.Oxidation kinetics of chromium and morphological phenomena[J].Oxid.Met.,1989,32(5):433.
[34] Sabioni A,Huntz A,Luz E,et al.Comparative study of high temperature oxidation behaviour in AISI 304 and AISI 439 stainless steels[J].Mater.Res.,2003,6 (2):179.
[35] Kurokawa H,Kawamura K,Maruyama T.Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient[J].Solid State Ionics.,2004,168(10):13.
[36] Huntz A M,Bague V,Beauple G,et al.Effect of silicon on the oxidation resistance of 9% Cr steels[J].Appl.Surf.Sci.,2003,207(1-4):255.
[37] Polman E A,Fransen T,Gellings P J.Oxidation kinetics of chromium and morphological phenomena[J].Oxid.Met.,1989,32(5):433.
[38] Geng S J,Zhu J H,Lu Z G.Investigation on haynes 242alloy as SOFC interconnect in simulated anode environment[J].Electrochem.Solid State Lett.,2006,9(4):A211.
[39] Hou P Y,Stringer J.The effect of reactive element additions on the selective oxidation,growth and adhesion of chromia scales[J].Mater.Sci.Eng.,1995,A202(5):1.
[40] Mikkelsen L.High temperature oxidation of ironchromium alloys[D].Roskilde:Risoe National Laboratory,2003.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%