欢迎登录材料期刊网

材料期刊网

高级检索

界面对复合材料蠕变性能的影响很大.在试验分析的基础上建立了硅酸铝短纤维增强AZ91D镁基复合材料理论分析模型,利用三维有限元分析方法,系统研究了界面特性、界面上应力应变分布和短纤维位向变化对硅酸铝短纤维增强AZ91D镁基复合材料蠕变性能的影响.研究表明:界面特性,如厚度、模量,均对纤维最大轴应力和稳态蠕变速率有影响,当界面厚度增加,纤维最大轴应力减小而稳态蠕变速率增大;当界面模量增大,纤维最大轴应力增大而稳态蠕变速率减小,但当界面模量高于基体模量时,纤维最大轴应力和稳态蠕变速率均保持不变;纤维位向也影响轴应力分布和稳态蠕变速率,纤维在其末端界面上存在较大的应力和应变,此处容易产生微裂纹而使材料抗蠕变能力下降;界面对硅酸铝短纤维增强AZ91D镁基复合材料的蠕变曲线和蠕变断裂机制也有影响,其影响程度还与纤维位向有关.

参考文献

[1] R. Schaller.Mechanical spectroscopy of interface stress relaxation in metal-matrix composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061/2(1/2):423-428.
[2] D.P. Mondal;N. Ramakrishnan;S. Das.FEM modeling of the interface and its effect on the elastio-plastic behavior of metal matrix composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061/2(1/2):286-290.
[3] S.H. Pyo;H.K. Lee.An elastoplastic damage model for metal matrix composites considering progressive imperfect interface under transverse loading[J].International Journal of Plasticity,20101(1):25-41.
[4] 姜云鹏;岳珠峰;万建松.界面特性对短纤维金属基复合材料蠕变行为的影响[J].计算力学学报,2003(6):743-748.
[5] Aghdam, MM;Gorji, M;Falahatgar, SR.Interface damage of SiC/Ti metal matrix composites subjected to combined thermal and axial shear loading[J].Computational Materials Science,20093(3):626-631.
[6] Lei Shi;Jiuchun Yan;Yanfei Han;Bo Peng.Behaviors of Oxide Layer at Interface between Semi-solid Filler Metal and Aluminum Matrix Composites during Vibration[J].材料科学技术学报:英文版,2011(08):746-752.
[7] Yinfeng Li;Zhonghua Li.Transverse creep and stress relaxation induced by interface diffusion in unidirectional metal matrix composites[J].Composites science and technology,201213(13):1608-1612.
[8] 康国政;高庆;刘世楷;张吉喜.界面对短纤维增强金属基复合材料力学行为的影响[J].复合材料学报,1999(1):35-40.
[9] Aghion E.;Bronfin B..Magnesium Alloys Development towards the 21~(st) Century[J].Materials Science Forum,20000(0):19-28.
[10] 田君;李文芳;韩利发;彭继华;刘刚.镁基复合材料的研究现状及发展[J].材料导报,2009(17):71-74.
[11] Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites[J].Composites science and technology,20106(6):p.970.
[12] Jian Wang;Irene J. Beyerlein;Nathan A. Mara.Interface-fadlitated deformation twinning in copper within submicron Ag-Cu multilayered composites[J].Scripta materialia,201112(12):1083-1086.
[13] ZHANG Yunhe;WU Gaohui.Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites[J].稀有金属(英文版),2010(01):102-107.
[14] Zhang R L;Huang Y D;Liu L.Effect of the molecular weight of sizing agent on the surface of carbon fibres and interface of its composites[J].Applied Surface Science,2011257(6):1840-1844.
[15] ZHANG Yun-he;WU Gao-hui.Interface and thermal expansion of carbon fiber reinforced aluminum matrix composites[J].中国有色金属学报(英文版),2010(11):2148-2151.
[16] A. Udayakumar;M. Balasubramanian;H. B. Gopala;P. Sampathkumaran;S. Seetharamu;Ramesh Babu;D. Sathiyamoorthy;G. R. Reddy.Influence of the type of interface on the tribological characteristics of ICVI generated SiC_f/SiC composites[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20115/6(5/6):859-865.
[17] 田君 .硅酸铝短纤维增强AZg1D复合材料蠕变行为的研究[D].广州:华南理工大学,2011.
[18] 康国政;高庆.短纤维增强金属基复合材料基体中的应力分布及其变形特征[J].复合材料学报,2000(2):20-24.
[19] 刘贯军 .Al<,2>O<,3>-SiO<,2(sf)>/AZ91D复合材料的界面结构、时效特性和摩擦磨损性能研究[D].华南理工大学,2007.
[20] 周履;范赋群.复合材料力学[M].北京:高等教育出版社,1991:105-139.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%