为了提高聚(3-羟基丁酸酯-co-4羟基丁酸酯)-聚乳酸(P(3HB-co-4HB)-PLA)生物基共混材料的力学性能和尺寸稳定性,扩大应用领域,以P(3HB-co-4HB)和PLA共混物为基体,盐酸或偶联剂表面处理的玻璃纤维(GF)为增强材料,采用熔融共混法制备GF/P(3HB-co-4HB)-PLA复合材料.通过傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)、热失重分析仪(TGA)和万能电子拉力机等研究了GF表面处理方法对复合材料力学性能、热性能、尺寸稳定性及断面形态的影响.研究结果表明:表面改性GF的加入可显著提高P(3HB-co-4HB)-PLA共混材料的综合性能.经偶联剂表面接枝的GF可均匀分散在P(3HB-co-4HB)-PLA基体中并形成较强的界面结合.添加质量分数20%的偶联剂改性GF使复合材料的拉伸强度、弯曲强度、缺口冲击强度和硬度分别提高了29.38%、20.32%、41.38%和15.31%;初始热分解温度(IDT)和维卡软化温度(VST)分别提高了6.64℃和10.7℃;室温和60℃放置60 d后复合材料试样长度方向的尺寸稳定性分别提高了32.47%和33.70%.
参考文献
[1] | 张云灿,陈瑞珠,于辑兴.玻璃纤维增强HDPE的性能及界面研究[J].高分子材料科学与工程,1992(3):94-100.Zhang Yuncan,Chen Ruizhu,Yu Jixing.Studies on the properties and interfacial surface of the glass fiber-reinforced high density polyethylene[J].Polymeric Materials Science and Engineering,1992(3):94-100. |
[2] | Lenz R W,Marchessault R H.Bacterial polyesters:biosynthesis,biodegradable plastics and biotechnology[J].Biomacromolecules,2005,6(1):1-81. |
[3] | 沈一丁,赖小娟,王磊.聚乳酸/乙基纤维素复合膜的制备及其性能[J].复合材料学报,2007,24(3):40-44.Shen Yiding,Lai Xiaojuan,Wang Lei.Preparation and properties of poly (lacticacid)/ethyl cellulose composite films[J].Acta Materiae Compositae Sinica,2007,24(3):40-44. |
[4] | 庄韦,张建华,刘靖,等.纳米TiO2/聚乳酸复合材料的制备和表征[J].复合材料学报,2008,25(3):8-11.Zhuang Wei,Zhang Jianhua,Liu Jing,et al.Preparation and characterization of nano-TiO2/polylactide composite[J].Acta Materiae Compositae Sinica,2008,25(3):8-11. |
[5] | 庄韦,贾海军,王喆,等.原位聚合法制备纳米凹凸棒土/聚乳酸复合材料[J].复合材料学报,2010,27(4):45-51.Zhuang Wei,Jia Haijun,Wang Zhe,et al.Preparat on of nanoattapulgite/polylactide composites by in situ polymerization[J].Acta Materiae Compositae Sinica,2010,27(4):45-51. |
[6] | Schwach G,Coudane J,Engel R,et al.More about the polymerization of lactides in the presence of stannous octoate[J].Journal Polymer Science Part A:Polymer Chemistry,1997,35(16):3431-3440. |
[7] | Janigova I,Lacil I,Chodak I.Thermal degradation of plasticized poly (3-hydroxybutyrate) investigated by DSC[J].Polymer Degradation and Stability,2002,77(1):35-41. |
[8] | 陈卫丰,居学成,翟茂林.完全生物降解聚乳酸共混复合材料的研究进展[J].高分子材料科学与工程,2011,27(2):171-174.Chen Weifeng,Ju Xuecheng,Zhai Maolin.Research progress in completely biodegradable poly (lactic acid) blends[J].Polymeric Materials Science and Engineering,2011,27 (2):171-174. |
[9] | Abdelwahab M A,Flynn A,Chiou B S,et al.Thermal,mechanical and morphological charactriaztion of plasticiaer PLA-PHB blends[J].Polymer Degradation and Stabillity,2012(97):1822-1828. |
[10] | Jarukumjom K,Suppakarn N.Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites[J].Composites,2009,Part B(40):623-627. |
[11] | 张士华,陈光,崔崇.偶联剂处理对玻璃纤维/尼龙复合材料力学性能的影响[J].复合材料学报,2006,23(3):31-36.Zhang Shihua,Chen Guang,Cui Chong.Effect of silicon coupling agent treatment of glass fiber on mechanical properties of GFRMCN[J].Acta Materiae Compositae Sinica,2006,23(3):31-36. |
[12] | 王超,牛永安,王静,等.酚醛树脂表面处理剂对碳纤维增强环氧树脂复合材料界面强度的影响[J].复合材料学报,2008,25(1):59-63.Wang Chao,Niu Yongan,Wang Jing,et al.In fluence of phenolic resin surface treatment agent on interfacial adhesion of carbon fiber reinforced epoxy resin composites[J].Acta Materiae Compositae Sinica,2008,25(1):59-63. |
[13] | 余剑英,周祖福,闻荻江.纤维表面处理与基体改性对连续玻纤增强聚丙烯力学性能的影响[J].复合材料学报,2000,17(3):6-10.Yu Jianying,Zhou Zufu,Wen Dijiang.Influence of coupling agents and matrix modification on mechanical properties of continuous glass fiber reinforced polypropylene[J].Acta Materiae Compositae Sinica,2000,17(3):6-10. |
[14] | Hao Y S,Liu F C,Shi H W,et al.The influence of ultrafine glass fibers on the mechanical and anticorrosion properties of epoxy coatings[J].Progress in Organic Coatings,2011(71):188-197. |
[15] | Moon C K.The effect of interfacial microstructure on the interfacial strength of glass fiber/polypropylene resin composites[J].Journal of Applied Polymer Science,1994,54(1):73-82. |
[16] | 裴涛,许国杨,张凯舟,等.玻璃微珠对PVC/ABS合金材料性能的影响[J].塑料科技,2010(5):50-53.Pei Tao,Xu Guoyang,Zhang Kaizhou,et al.Effect of glass bead on the properties of PVC/ABS alloy material[J].Plastics Science and Technology,2010(5):50-53. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%