欢迎登录材料期刊网

材料期刊网

高级检索

为研究SF6气体中由极不均匀场引发的流注放电的微观机制以及放电过程中的瞬态产物,基于玻尔兹曼漂移扩散方程和SF6电子碰撞反应截面数据,对SF6气体中的流注放电进行有限元数值仿真。仿真模拟了流注发展过程中外部电流的3个阶段性特征,得到了SF6气体各发展阶段的微观过程,包括流注发展中电子、离子及电荷的密度分布;结合理论分析,揭示了外施电势与流注放电通道内外的电场分布的关系,并指出若使流注向前发展,外施电势不但要克服流注通道反向电场,还要维持流注头部电场大于电离临界场强。另外,通过该仿真模型还获得了SF6气体中电离瞬态产物的成分及各自比例,F、F+、SF6vib+、SF5+、SF4++、SF4+、SF3+和SF6+为流注放电过程中的主要瞬态产物。

In order to study the micro-mechanism of streamer discharge caused by non-uniform electric field and the transient products during discharge process, the streamer discharge in SF6 gas was simulated by finite element numerical base on Boltzmann drift-diffusion equations (BDDE) and cross section data of electron collision reaction. Three characteristics of external current during streamer process were simu-lated, and the micro-process including the distribution of electron density, ion density, and charge density were obtained. The relationship between applied potential and electric field distribution inside and outside of streamer channel was revealed by theoretical analysis. It is pointed that if the streamer develops for-ward, the applied potential should be great enough not only to overcome the revised field along the streamer channel but also to keep the electric field intensity ahead of streamer greater than the critical electric field intesnity of ionization. Moreover, the ionization transient products and their proportions were obtained by simulation, and the F、F+、SF6vib+、SF5+、SF4++、SF4+、SF3+, and SF6+ are the main products during streamer process.

参考文献

[1] 汪沨,邱毓昌.气体绝缘开关装置(GIS)的近期发展动向[J].电网技术,2003(02):54-57.
[2] Pedersen A .Criteria for Spark Breakdown in Sulfur Hexaflu-oride[J].IEEE Transactions on Power Apparatus and Sys-tems,1970,PAS-89(08):2043-2048.
[3] Bortnik I M;Cooke C M .Electrical Breakdown and the Similarity Law in SF6 at Extra-high-voltages[J].IEEE Trans-actions on Power Apparatus and Systems,1972,PAS-91(05):2196-2203.
[4] Kawaguchi Y;Sakata K;Menju S .Dielectric Breakdown of Sulphur Hexafluoride in Nearly Uniform Fields[J].IEEE Transactions on Power Apparatus and Systems,1971,PAS-90(03):1072-1078.
[5] Nitta T;Shibuya Y .Electrical Breakdown of Long Gaps in Sulfur Hexafluoride[J].IEEE Transactions on Power Appara-tus and Systems,1971,PAS-90(03):1065-1071.
[6] Anis H;Srivastava K D .Pre-breakdown Discharges in Rod-plane Gaps in SF6 Under Positive Switching Impulses[J].IEEE Transactions on Electrical Insulation,1981,EI-16(06):552-563.
[7] Anis H;Srivastava K D .Breakdown of Rod-plane Gaps in SF6 Under Positive Switching Impulses[J].IEEE Transac-tions on Power Apparatus and Systems,1982,PAS-101(03):537-546.
[8] Kuffel E;Yializis A .Impulse Breakdown of Positive and Negative Rod-plane Gaps in SF6-N2 Mixtures[J].IEEE Trans-actions on Power Apparatus and Systems,1978,PAS-97(06):2359-2366.
[9] Malik N H;Qureshi A H .Breakdown Mechanisms in Sul-phur-Hexafluoride[J].IEEE Transactions on Electrical Insula-tion,1978,EI-13(03):135-145.
[10] Anis H;Srivastava K D .Pre-breakdown Discharges in Highly Non-uniform Fields in Relation to Gas-insulated Systems[J].IEEE Transactions on Electrical Insulation,1982,EI-17(02):131-142.
[11] Nelson J K .Positive Corona Processes in Electronegative Gaseous Dielectrics[J].IEEE Transactions on Electrical In-sulation,1985,EI-20(03):601-607.
[12] Gallimberti I;Wiegart N .Streamer and Leader Formation in SF6 and SF6 Mixtures Under Positive Impulse Condi-tions. I. Corona Development[J].Journal of Physics D:Ap-plied Physics,1986,19(12):2351.
[13] Gallimberti I;Wiegart N .Streamer and Leader Formation in SF6 and SF6 Mixtures Under Positive Impulse Condi-tions II. Streamer to Leader Transition[J].Journal of Phys-ics D:Applied Physics,1986,19(12):2363-2375.
[14] Morrow R.;Lowke JJ. .STREAMER PROPAGATION IN AIR[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,1997(4):614-627.
[15] 王湘汉,汪沨,邱毓昌.均匀场中SF6二维流注放电模型的动态仿真[J].高电压技术,2008(07):1358-1362.
[16] Woong-Gee Min;Hyeong-Seok Kim;Seok-Hyun Lee;Song-Yop Hahn .A study on the streamer simulation using adaptive mesh generation and FEM-FCT[J].IEEE Transactions on Magnetics,2001(5 Pt.1):3141-3144.
[17] Liu J F;Govinda Raju .Simulation of Corona Discharge:I. Negative Corona in SF6[J].IEEE Transactions on Dielec-trics and Electrical Insulation,1994,1(03):520-529.
[18] Liu J F;Govinda Raju .Simulation of Corona Discharge:II. Positive Corona in SF6[J].IEEE Transactions on Dielec-trics and Electrical Insulation,1994,1(03):530-538.
[19] 王湘汉,汪沨,邱毓昌.SF6/N2混合气体流注放电二维动力学模型的计算机仿真[J].绝缘材料,2007(04):70-73.
[20] Van Brunt R.J.;Herron J.T. .Fundamental processes of SF/sub 6/ decomposition and oxidation in glow and corona discharges[J].IEEE transactions on electrical insulation. (Institute of Electrical and Electronics Engineers. Electrical Insulation Group). New York.,1990(1):75-94.
[21] Christophorou LG.;Olthoff JK. .Electron interactions with SF6 [Review][J].Journal of Physical and Chemical Reference Data,2000(3):267-330.
[22] Hagelaar GJM;Pitchford LC .Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J].Plasma Sources Science & Technology,2005(4):722-733.
[23] Shirshak K D;Anup K P .Numerical Simulation of Stream-ers in SF6[J].Journal of Applied Physics,1988,63:1355-1362.
[24] 陈安明,杨洋,黄文龙,张智勇,付祥波.基于SF6分解产物的GIS放电故障诊断分析[J].绝缘材料,2013(02):83-85.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%