欢迎登录材料期刊网

材料期刊网

高级检索

目的提高锂离子电池锗基材料的电化学性能。方法采用电泳和离子液体电沉积制备乙炔黑/锗负极材料,用SEM,Raman和充放电循环等手段表征其结构和性能。结果乙炔黑/锗负极材料在0.2 C倍率下循环100次,比容量依然可达到600 mAh/g以上。结论乙炔黑/锗负极材料的电化学性能明显优于单独锗材料和碳材料。

ABSTRACT:Objective To improve the electrochemical performance of the germanium materials of lithium-ion batteries. Methods Germanium nanoparticles ( Ge-NPs) and acetylene black anodes were fabricated through electrodeposition of Ge in the new-genera-tion ionic liquids on the surface of acetylene black which was electrophoretically deposited on a copper current collector. The struc-ture and electrochemical properties were characterized by electron microscopy, Raman spectroscopy and constant current charge-discharge methods. Results The acetylene black-Ge nanocomposite exhibited the electrochemical cycling properties of over 600 mAh/g at 0. 2C after 100 cycles. Conclusion The electrochemical performance of composite was obviously better than Ge or acety-lene black by itself as anode electrode material.

参考文献

[1] 李继红,何建新,张先勇,刘静,李超.某型军用锂离子电池低温环境适应性[J].装备环境工程,2014(01):111-115.
[2] 颜剑,苏玉长,苏继桃,卢普涛.锂离子电池负极材料的研究进展[J].电池工业,2006(04):277-281.
[3] KASAVAJJU L A;WANG U C .Appleby,Nano and Bulk-Silicon-based Insertion Anodes for Lithium-ion Secondary Cells[J].Journal of Power Sources,2007,163(02):1003-1039.
[4] M. N. Obrovac;Leif Christensen .Structural Changes in Silicon Anodes during Lithium Insertion/Extraction[J].Electrochemical and solid-state letters,2004(5):A93-A96.
[5] Yoon, S;Park, CM;Sohn, HJ .Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries[J].Electrochemical and solid-state letters,2008(4):A42-A45.
[6] Guanglei Cui;Lin Gu;Nitin Kaskhedikar;Peter A. van Aken;Joachim Maier .A novel germanium/carbon nanotubes nanocomposite for lithium storage material[J].Electrochimica Acta,2010(3):985-988.
[7] LIU W R;GUO Z Z;YOUNG W S et al.Effect of Electrode Structure on Performance of Si Anode in Li-ion Batteries:Si Particle Size and Conductive Additive[J].Journal of Power Sources,2005,140(01):139-144.
[8] WANG Y .Synthesis of Ge/C Core-shell Nanocomposites for High-performance Lithium Storage in Lithium-ion Batteries[J].Chemistry:a European Journal,2013,8(12):3142-3146.
[9] CHENG J .Synthesis of Germanium-Graphene Nanocompos-ites and Their Application as Anode Materials for Lithium Ion Batteries[J].CRYSTENGCOMM,2012,14(02):397.
[10] 范长岭,徐仲榆.乙炔黑在锂离子电池负极中的贮锂功能[J].炭素技术,2007(01):19-21.
[11] Roberta A. DiLeo;Matthew J. Ganter;Ryne P. Raffaelle;Brian J. Landi .Germanium—single-wall carbon nanotube anodes for lithium ion batteries[J].Journal of Materials Research,2010(8):1441-1446.
[12] Kim BC;Uono H;Sato T;Fuse T;Ishihara T;Senna M .Li-ion battery anode properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill[J].Solid state ionics,2004(1/4):33-37.
[13] Roberta A. DiLeo;Sarah Frisco;Matthew J. Ganter .Hybrid Germanium Nanoparticle-Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2011(45):22609-22614.
[14] Lee, JK;Smith, KB;Hayner, CM;Kung, HH .Silicon nanoparticles-graphene paper composites for Li ion battery anodes[J].Chemical communications,2010(12):2025-2027.
[15] Endres F;El Abedin SZ .Air and water stable ionic liquids in physical chemistry[J].Physical chemistry chemical physics: PCCP,2006(18):2101-2116.
[16] 赵运伟,黄巍,田海燕,王晓雷.电泳-电沉积Ni-金刚石复合镀层及其耐磨性能研究[J].表面技术,2013(02):77-79,125.
[17] 刘小勤,曾冬铭,徐钦建,黄凤祥,刘中兴.电沉积聚8-羟基喹啉膜及其耐蚀性的研究[J].表面技术,2013(02):84-88.
[18] Jian-Guo Ren;Qi-Hui Wu;Hao Tang .Germanium-graphene composite anode for high-energy lithium batteries with long cycle life[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,2013(5):1821-1826.
[19] Guanglei Cui;Lin Gu;Linjie Zhi;N. Kaskhedikar;Peter A. van Aken;Klaus Muellen;Joachim Maier .A Germanium-Carbon Nanocomposite Material for Lithium Batteries[J].Advanced Materials,2008(16):3079-3083.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%