欢迎登录材料期刊网

材料期刊网

高级检索

电站高温部件长期在高温高压下运行,多轴蠕变是其发生失效的主要原因之一,受到国内外学者的广泛关注.基于微观结构变化、孔洞长大理论和连续损伤力学方法3个方面,对多轴应力状态下蠕变的理论研究和实验研究的进展及应用进行归纳,并对多轴蠕变的发展进行展望.

参考文献

[1] 姚华堂,轩福贞,王正东,涂善东.基于孔洞长大理论的多轴蠕变设计模型及其工程应用[J].核动力工程,2007(03):72-77.
[2] 姚华堂,轩福贞,王正东,涂善东.基于蠕变孔洞长大理论的高温构件蠕变强度设计准则研究[J].核动力工程,2008(04):74-78.
[3] 姚华堂,轩福贞,沈树芳,王正东.高温材料的多轴蠕变试验方法[J].机械工程材料,2008(01):5-9,62.
[4] 林琳,周荣灿,郭岩,侯淑芳,范长信,贾建民.应力与温度对P92钢中Laves相析出行为的影响[J].热力发电,2012(05):56-60.
[5] Lee J S;Armaki H G;Maruyama K et al.Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2006,428(1-2):270.
[6] P.J.Ennis;A.Zielinska-lipiec;O.Wachter .Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J].Acta Materialia,1997(12):49014907-0.
[7] 张红军;周荣灿;唐丽英 等.P92钢650℃时效的组织性能研究[J].中国电机工程学报,2009,29(01):174.
[8] 姚兵印,周荣灿,范长信,李太江,John Hald.P92钢中拉弗斯相的尺寸测量及其长大规律的动力学模拟计算[J].中国电机工程学报,2010(08):94-100.
[9] 彭志方,蔡黎胜,彭芳芳,胡永平,陈方玉.P92钢625℃持久性能分段特征与各段中M_(23)C_6及Laves相相参数的定量变化研究[J].金属学报,2010(04):429-434.
[10] 王学,潘乾刚,陶永顺,章应霖,曾会强,刘洪.P92钢焊接接头Ⅳ型蠕变断裂特性[J].金属学报,2012(04):427-434.
[11] 施惠基,马显锋,于涛.高温结构材料的蠕变和疲劳研究的一些新进展[J].固体力学学报,2010(06):696-715.
[12] 郭岩,周荣灿,侯淑芳,林琳.INCONEL617合金的高温时效析出相[J].中国电力,2012(01):33-36.
[13] Edward G;Ashby M .Intergranular fracture during powerlaw creep[J].Acta Metall,1979,27(09):1505.
[14] Cocks A;Ashby M .On creep fracture by void growth[J].Progress in Material Science,1982,27(03):189.
[15] Cocks A C F;Ashby M F .Intergranular fracture during power-law creep under multiaxial stresses[J].Metal Science Journal,1980,14(8-9):395.
[16] Hales R .The role of cavity growth mechanisms in determining creep-rupture under multiaxial stresses[J].Fatigue Fracture Eng Mater Structures,1994,17(05):579.
[17] M. W. Spindler .The multiaxial and uniaxial creep ductility of Type 304 steel as a function of stress and strain rate[J].Materials at High Temperatures,2004(1):47-54.
[18] M. W. SPINDLER .The multiaxial creep ductility of austenitic stainless steels[J].Fatigue & Fracture of Engineering Materials and Structures,2004(4):273-281.
[19] Hayhurst D .Creep rupture under multi-axial states of stress[J].J Mechan Phys Solids,1972,20(06):381.
[20] Huddleston R .An improved multiaxial creep-rupture strength criterion[J].J Pressure Vessel Techn,1985,107:421.
[21] Hyde T H;Xia L;Becker A A .Prediction of creep failure in aeroengine materials under multi-axial stress states[J].Int J Mechan Sci,1996,38(04):385.
[22] Xu Q;Hayhurst D R .The evaluation of high-stress creep ductility for 316 stainless steel at 550 ℃ by extrapolation of constitutive equations derived for lower stress levels[J].INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING,2003,80(10):689.
[23] Othman A;Hayhurst D;Dyson B .Skeletal point stresses in circumferentially notched tension bars undergoing tertiary creep modelled with physically based constitutive equations[J].Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences,1993,441(1912):343.
[24] Hayhurst DR;Lin J;Hayhurst RJ .Failure in notched tension bars due to high-temperature creep: Interaction between nucleation controlled cavity growth and continuum cavity growth[J].International Journal of Solids and Structures,2008(7/8):2233-2250.
[25] Kowalewski Z;Hayhurst D;Dyson B .Mechanisms-based creep constitutive equations for an aluminium alloy[J].J Strain Analysis Eng Des,1994,29(04):309.
[26] Mustata R et al.Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 565 ℃-675 ℃[J].INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING,2005,82(05):363.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%