欢迎登录材料期刊网

材料期刊网

高级检索

通过涂覆热分解法并结合电化学聚合法制备得到聚苯胺(PANI)/RuO2电极材料。使用涂覆热分解法于260℃热处理3 h制备RuO2薄膜, 通过电化学聚合法将PANI粒子沉积在RuO2薄膜上, 并在80℃加热12 h。采用XRD分析PANI/RuO2复合物晶相, 采用SEM观察PANI/RuO2复合电极材料的形貌变化。利用循环伏安及恒流充放电测试了该复合电极的电化学性能。结果表明, PANI沉积时间为25 min, 该PANI/RuO2复合电极的最大电容量为9.72 F, 比电容为452 F·g^-1, 充放电曲线体现了较低的电压降、等效串联电阻及良好的充放电性能。经1000次循环伏安后, 其比电容损失约为11%。

Polyaniline (PANI)/RuO2 composite electrodes were prepared by coating thermal decomposition and electrochemistry polymerization procedures. RuO2 film was synthesized by coating thermal decomposition method at 260℃ for 3 h, and PANI particles were deposited on RuO2 films and dried at 80℃ for 12 h. The formation of the amorphous phase of PANI/RuO2 composite was studied by XRD. Morphologic variations of the composite electrodes were established by SEM. Electrochemical performances of the composite electrodes were measured by cyclic voltammetry (CV) and galvanostatic charge-discharge. The results show that when the deposition time of PANI is 25 min, the maximum capacitance and the specific capacitance of PANI/RuO2 composite electrode is 9.72 F and 452 F·g^-1 respectively. Charge-discharge curves of the composite electrodes illustrate low potential drops, internal resistances and good charge-discharge properties. Approximately 11% loss of capacitance is observed after 1000 CV cycles.

参考文献

[1] 甘卫平,马贺然,李祥.超级电容器用(Ru02/Coa04)·nH20复合电极的制备及性能[J].无机材料学报,2011,26(8):823-828.
[2] Yoon Y S, Cho W I, Lim J H, et al. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films [J]. Power Sources, 2001, 101(1): 126-129.
[3] Kim H, Popov B N. A mathematical model of oxide/carbon composite electrode for super-capacitors [J]. Journal of the Electrochemical Society, 2003, 150(9): Al153-Al160.
[4] 李祥,甘卫平,马贺然.胶体法制备60%Ru02一AC复合电极材料及其性能[J].复合材料学报,2011,28(3):90-95.
[5] Zheng J P, Jow T R. A new charge storage mechanism for electrochemical capacitors [J]. Journal of the Electrochemical Society, 1995, 142(1)- L6-L7.
[6] Park J H, Park O O. Hybrid electro- chemical capacitors based on polyaniline and aetivatedcarbon electrodes [J]. Journal of Power Sources, 2002, 111(1) : 185-190.
[7] Fusalba F, Meholi N E, Breau L, et al. Physico-chemical and electrochemical charaeterization of polycyclopenta [2,1- b ; 3,4 -hi dithio- phen- 4- one as an active electrode for electro chemical supercapacitor [J]. Chemistry of Materials, 1999, 11 (10) : 2743-2753.
[8] Conway B E. Electrochemical supercapacitors [M ]. New York: Kluwer Acadmic Publishers/Plenum Press, 1999.
[9] Wessling B. Scientific and commercial breakthrough for organic metals [J]. Synthetic Metals, 1997, 85(1): 1313-1318.
[10] Cruz S R, Romero G J, Angulo S J L, et al. Comparative study of polyaniline cast films prepared from enzymatically and chemically synthesized polyaniline [J].Polymer, 2004, 45 (14) : 4711-4717.
[11] Song R Y, Park J H, Sivakkumar S R, et al. Supereapacitive properties of polyaniline/nation/hydrous RuOz composite electrodes[J]. Journal of Power Sources, 2007, 166(1): 297-301.
[12] Rao C R K, Vijayan M. Ruthenium(I) - mediated synthesis of conducting polyanilinc (PANI): A novel route for PANI-RuO2 composite[J].Synthetic Metals, 2008, 158(12): 516-519.
[13] Fan L Z, Hu Y S, Maier J, et al. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support[J].Advanced Functional Materials, 2007, 17(16)- 3083-3087.
[14] Wang YG, Li H Q, Xia Y Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance [J].Advanced Material, 2006, 18(19): 2619-2623.
[15] Kovalenko I, Bucknall D G, Yushin G. Detonation nanodiamond and onion- like-carbon embedded polyaniline for super capacitors [J]. Advanced Functional Materials, 2010, 20: 3979-3986.
[16] Rosario A V, Bulhoes L O S, et al. Investigation of pseudocapacitive properties of RuOz film electrodes prepared by polymeric precursor method [J]. Journal of Power Sources, 2006, 158(1): 795-800.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%