Quasi-one dimensional iron oxide nanowires with flat needle shape were synthesized on the iron powders by a rather simple catalyst-free thermal oxidation process in ambient atmosphere. The characterization by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman and high-resolution transmission electron microscopy (HRTEM) revealed that these nanostructures are single crystalline α-Fe2O3. The various dimensions with 40-170 nm in width and 1-8 μm in length were obtained by tuning the growth temperature from 280 to 480°C. A surface diffusion mechanism was proposed to account for the growth of quasi-one dimensional nanostructure. The typical α-Fe2O3 nanowires synthesized at 430°C had a reduced Morin temperature TM of 131 K in comparison with their bulk counterpart. The coercivitis Hc of these nanowires are 321 and 65 Oe at 5 and 300 K, respectively. The temperature of synthesis also has important effects on the magnetic properties of these nanowires.
参考文献
[1] | X.H. Huang, G.H. Li, X.C. Dou and L. Li: J. Appl. Phys., 2009, 105, 084306.[2 ] W.S. Yun, J.J. Urban, Q. Gu and H. Park: Nano Lett., 2002, 2, 447.[3 ] H. Ohno: Science, 1998, 281, 951.[4 ] H.M. Chen, Y.Q. Zhao, M.Q. Yang, J.H. He, P.K. Chu, J. Zhang and S.H. Wu: Ana. Chim. Acta, 2010, 659, 266.[5 ] A.A. Tahir, K.G.U. Wijayantha, S. SaremiYarahmadi, M. Mazhar and V. McKee: Chem. Mater., 2009, 21, 3763.[6 ] N. Beermann, L. Vayssieres, S.E. Lindquist and A. Hagfeldt: J. Electrochem. Soc., 2000, 147, 2456.[7 ] Y.W. Zhu, T. Yu, C.H. Sow, Y.J. Liu, A.T.S. Wee, X.J. Xu, C.T. Lim and J.T.L. Thong: Appl. Phys. Lett., 2005, 87, 023103.[8 ] J.J. Wu, Y.L. Lee, H.H. Chiang and D.K.P. Wong: J. Phys. Chem. B, 2006, 110, 18108.[9 ] B. Tang, G.L. Wang, L. H. Zhuo, J.C. Ge and L.J. Cui: Inorg. Chem., 2006, 45, 5196.[10] X.H. Huang, Z.Y. Zhan, X. Wang, Z. Zhang, G.Z. Xing, D.L. Guo, D.P. Leusink, L.X. Zheng and T. Wu: Appl. Phys. Lett., 2010, 97, 203112.[11] Y.L. Chueh, M.W. Lai, J.Q. Liang, L.J. Chou and Z.L.Wang, Adv. Funct. Mater., 2006, 16, 2243.[12] K. Woo and H.J. Lee: J. Magn. Magn. Mater., 2004, 272, E1155.[13] C. Pascal, J.L. Pascal, F. Favier, M.L.E. Moubtassim and C. Payen: Chem. Mater., 1999, 11, 141.[14] X.G. Wen, S.H. Wang, Y. Ding, Z.L. Wang and S.H. Yang: J. Phys. Chem. B, 2005, 109, 215.[15] J. Chen, L.N. Xu, W.Y. Li and X.L. Gou: Adv. Mater., 2005, 17, 582.[16] Y.Y. Fu, R.M. Wang, J. Xu, J. Chen, Y. Yan, A. Narlikar and H. Zhang: Chem. Phys. Lett., 2003, 379, 373.[17] Y.M. Zhao, Y.H. Li, R.Z. Ma, M.J. Roe, D.G. Mc-Cartney and Y.Q. Zhu: Small, 2006, 2, 422.[18] X. Wang, X.Y. Chen, L.S. Gao, H.G. Zheng, M.R. Ji, C.M. Tang, T. Shen and Z.D. Zhang: J. Mater. Chem., 2004, 14, 905.[19] K.Y. Shi, Y.J. Chi, H.T. Yu, B.F. Xin and H.G. Fu: J. Phys. Chem. B, 2005, 109, 2546.[20] E.B. Gracien, R.M. Zhou, L.H. Xin, L.K. Kanza and I. Lopaka: J. Radioanal. Nucl. Chem., 2006, 270, 473.[21] I.R. Beattie and T.R. Gilson: J. Chem. Soc. A, 1970, 5, 980.[22] J.L. Verble: Phys. Rev. B, 1974, 9, 5236.[23] A.M.B. Goncalves, L.C. Campos, A.S. Ferlauto and R.G. Lacerda: J. Appl. Phys., 2009, 106, 104302.[24] M.L. Zhong, D.C. Zeng, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu: Acta Mater., 2010, 58, 5926. [25] R.D. Zysler, D. Fiorani, A.M. Testa, L. Suber, E. Agostinelli and M. Godinho: Phys. Rev. B, 2003, 68, 212408.[26] N. Amin and S. Arajs: Phys. Rev. B, 1987, 35, 4810. [27] M.H. Cao, T.F. Liu, S. Gao, G.B. Sun, X.L. Wu, C.W. Hu and Z.L. Wang: Angew. Chem. Int. Edit., 2005, 44, 4197.[28] C. Diaz-Guerra, L. Perez, J. Piqueras and M.F. Chioncel: J. Appl. Phys., 2009, 106, 104302.[29] H.M. Lu and X.K. Meng: J. Phys. Chem. C, 2010, 114, 21291. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%