针对转炉炼钢静态控制模型广泛采用的常规回归分析算法采用目标炉次的前几炉次冶炼数据作为样本,模型预测准确度低的问题,提出了一种基于样本自选择的回归分析算法。该算法从实际生产数据中自动选取一定数量的合适样本来构建回归分析预测模型,实现吹氧量、冷却剂加入量、终点温度和终点碳含量的预测。通过某钢厂120t转炉Q235B钢种的实际生产数据与该算法、常规回归分析算法和BP神经网络算法进行预测结果比较,表明本算法具有预测准确度高,综合预测效果好等优点。
As a static control algorithm of BOF steelmaking, general regression algorithm chooses a few last smelting data as the sample without appropriate screening, and the accuracy of prediction was not high. To solve this problem, the regression algorithm based on sample-self-selection was proposed. The algorithm selected a certain number of appropriate samples from the actual production data automatically to build a regression model, implementing the predictions of oxygen consumption, coolant consumption, end-point temperature and end-point carbon content. Through comparing operational data and the prediction effects among general regression algorithm, BP neural network algorithm and the regression algorithm based on sample-self-selection for 120t converter, the results show that this algorithm has the advantage of high accuracy and effective comprehensive prediction.
参考文献
[1] | |
[2] | 韩家炜(加), 堪博 著.范明,孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2007[2] 王心哲,韩敏.基于变量选择的转炉炼钢终点预报模型[J].控制与决策,2010,25(10):1589~1592[3] GuiCheng Wang, Xiangping Kong, ZhanSheng Zhang, et al. Based on BP Network Terminal Quality Prediction for BOF Steelmaking Process [J]. Chinese Control and Decision Conference, 26-28 May 2010: 2663~2666[4] M.V.V.N. Sriram, N.K. Singh, G.Rajaraman. Neuro Fuzzy Modelling of Basic Oxygen Furnace and its comparison with Neural Network and GRNN Models [J]. Computational Intelligence and Computing Research, 28-29 Dec. 2010: 1~8[5] 常立忠,李正邦.基于BP神经网络的转炉静态控制模型[J].炼钢,2006,22(6):41~44[6] 韩敏,黄晓清,王心哲.贪婪核主元模糊神经网络在转炉炼钢终点预报中的应用[J].信息与控制,2008,37(4):494~499[7] A.M. Frattini Fileti, T.A. Pacianotto, A. Pitasse Cunba. Neural modeling helps the BOS process to achieve aimed end-point conditions in liquid steel [J]. Engineering Applications of Artificial Intelligence, 2006, 19:9~17[8] 谢书明,陶钧,柴天佑.基于神经网络的转炉炼钢终点控制[J].控制理论与应用,2003,20(6):903~907[9] 冯明霞,邹宗树,李强.应用改进的神经网络模型预报转炉冶炼终点[J].炼钢,2006,22(1):40~44[10] 王水波. 攀钢转炉炼钢计算机静态控制技术的研究[D].重庆:重庆大学钢铁冶金专业,2000[11] 孟祥宁,张海鹰,朱苗勇.转炉炼钢过程静态控制模型的改进[J].材料与冶金学报,2004,3(4):246~249 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%