通过对双曲正切-S算子的改进,提出了一种用于钢的大气腐蚀影响因子评估的BP神经网络模型,采用零均值标准化使输入数据符合模型要求,引入贝叶斯正则化算法解决了小样本泛化问题。仿真试验表明,该模型能在无任何先验知识的情况下较好的反映诸因子对大气腐蚀的影响。
On the basis of improved hyperbolic tangent sigmoid transfer function, a cause-factors evaluation BP neural network model for estimating the atmospheric corrosion of steels was proposed. Using the zero mean stand method to preprocess the input data, Bayesian regularization arithmetic was introduced to solve the generalization problem on sparse data. The simulated results showed that the model provided good evaluation for atmospheric corrosion cause-factors without any prior knowledge.
参考文献
[1] |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%