{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以Lanxide材料的成形工艺控制为目标,研究了SiO2表面覆盖在铝合金熔体直接氧化生长过程中的作用.结果表明有效促进Al2O3/Al复合材料生长的SiO2加入量为1~6 g/dm2.SiO2能够显著促使材料近平面生长,形成细化胞状晶团和提高组织均匀度;在覆盖SiO2的条件下,温度升高,生长速度加快的同时,材料宏观生长表面趋于平整,但温度过高会对组织致密度产生不利影响.","authors":[{"authorName":"袁森","id":"a4eada21-a1c1-435d-a5ba-3f9a627e759b","originalAuthorName":"袁森"},{"authorName":"都业志","id":"650da24b-e46c-4866-b44a-b6daf4602276","originalAuthorName":"都业志"},{"authorName":"王武孝","id":"9a73ae9a-6a02-4b43-abc5-cce5dfa40885","originalAuthorName":"王武孝"}],"doi":"","fpage":"13","id":"e8fe08e6-1a00-4ccf-a1b0-44c4d7ce80b0","issue":"z1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"edfcc417-f8b5-43b3-976f-064dbf406876","keyword":"直接金属氧化","originalKeyword":"直接金属氧化"},{"id":"806c9efb-5c9d-4b2f-96a9-a4b623be7e17","keyword":"Al2O3/Al复合材料","originalKeyword":"Al2O3/Al复合材料"},{"id":"07d72761-b8ff-45eb-9ff9-d68577fed3e8","keyword":"SiO2表面覆盖","originalKeyword":"SiO2表面覆盖剂"},{"id":"9215f14d-c62b-47ef-934a-33feb591326a","keyword":"生长形貌","originalKeyword":"生长形貌"},{"id":"402e9f5c-d6ab-496a-a49e-57b07c5d633e","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"zgysjsxb2001z1004","title":"SiO2表面覆盖对铝合金熔体直接氧化生长的影响","volume":"11","year":"2001"},{"abstractinfo":"通过热力学计算和XRD分析,确定了Al-Mg-Si合金熔体与SiO2表面覆盖反应的生成物相为Al2O3、Al、Si和MgAl2O4.直接金属氧化动力学实验表明,SiO2与熔体的接触反应加快了初期的传质过程,使微观传输通道始终处于活性状态,生成的Al2O3构筑了材料的初始骨架,Al2O3/Al复合材料氧化生长的孕育期消失.","authors":[{"authorName":"袁森","id":"39a1e9ec-6a79-43a7-a206-1e685c7f2370","originalAuthorName":"袁森"},{"authorName":"都业志","id":"4bc6aff4-188f-47b8-b0b1-422d118b5181","originalAuthorName":"都业志"},{"authorName":"王武孝","id":"9fe0f56a-13dd-4d14-be8a-4d6737f5b8ce","originalAuthorName":"王武孝"}],"doi":"","fpage":"58","id":"1f8eae81-8fbb-4c65-a4e1-99307a43c527","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"abc6d25b-a7c8-41d0-881f-b8b9fac7fe70","keyword":"直接金属氧化","originalKeyword":"直接金属氧化"},{"id":"39604fae-eb53-4c80-8371-dce00a5aa378","keyword":"A12O3/Al复合材料","originalKeyword":"A12O3/Al复合材料"},{"id":"6b1071fb-52be-47e5-a2c1-d002cc5d44e5","keyword":"SiO2表面覆盖","originalKeyword":"SiO2表面覆盖剂"},{"id":"cc25d3c4-6528-4a80-8feb-72f7c65f317c","keyword":"反应机理","originalKeyword":"反应机理"}],"language":"zh","publisherId":"cldb200106022","title":"铝合金表面覆盖SiO2直接氧化生长的反应机理","volume":"15","year":"2001"},{"abstractinfo":"采用硅烷偶联γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)处理纳米SiO2,并用FT-IR、ζ-电势、TG、TEM对纳米SiO2的处理效果进行了表征.结果表明,纳米SiO2的接枝率随偶联MPS加入量的增加而增加;当pH值为4,MPS/SiO2为50%,反应温度为110 ℃、时间为90 min时,纳米SiO2表面MPS的接枝包覆率达到35.7%;此时纳米SiO2粒子在乳液中的分散更为均匀.","authors":[{"authorName":"王美英","id":"4f81a33b-eb87-4915-b319-c87485526c22","originalAuthorName":"王美英"},{"authorName":"佘庆彦","id":"7fcff4a6-e723-4c7b-b2f6-bebeeb7acb0f","originalAuthorName":"佘庆彦"},{"authorName":"刘国栋","id":"7b46d9e8-ec15-43ec-816d-176b6d60163d","originalAuthorName":"刘国栋"},{"authorName":"瞿雄伟","id":"6dcb8360-1ce3-4b58-bf1a-dd56928d9f5d","originalAuthorName":"瞿雄伟"}],"doi":"","fpage":"228","id":"9de08842-799c-4573-af94-c1b5b4fed545","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8a5f75c4-0801-40de-bb6b-fc775ea18908","keyword":"MPS","originalKeyword":"MPS"},{"id":"547d4886-e2ae-4bce-900a-d5a068cb9fa6","keyword":"纳米SiO2","originalKeyword":"纳米SiO2"},{"id":"124c3f44-e914-4a01-b3ff-523b7aef5d54","keyword":"表面处理","originalKeyword":"表面处理"},{"id":"3f604168-883f-42e7-842d-7a83b7f8c8d8","keyword":"接枝包覆","originalKeyword":"接枝包覆"}],"language":"zh","publisherId":"gfzclkxygc200506058","title":"硅烷偶联表面接枝包覆纳米SiO2的研究","volume":"21","year":"2005"},{"abstractinfo":"采用硅烷偶联KH-570在酸性条件下对纳米SiO2表面进行改性,并对改性前后的纳米SiO2采用粒径分析仪、傅里叶红外变换光谱仪、紫外-可见光光谱仪、扫描电镜等仪器进行了分析和表征。结果表明,硅烷偶联KH-570能成功地对纳米SiO2表面进行改性,使其表面化学键合了硅烷偶联的有机官能团,降低了颗粒团聚程度,提高了纳米SiO2在有机介质中的分散程度","authors":[{"authorName":"张云浩","id":"3d23fa3c-5efd-4a16-88b8-d69fd0ae29c2","originalAuthorName":"张云浩"},{"authorName":"翟兰兰","id":"49a070ab-48ca-4bf6-a7de-61b45fd6426b","originalAuthorName":"翟兰兰"},{"authorName":"王彦","id":"46e9d064-6857-4af5-ab1f-134691562262","originalAuthorName":"王彦"},{"authorName":"刘若望","id":"c728fdf1-7b82-467c-96f9-764dd908f6b9","originalAuthorName":"刘若望"},{"authorName":"袁继新","id":"e3c7b85a-e054-4e84-9fd6-d250eb133420","originalAuthorName":"袁继新"},{"authorName":"兰云军","id":"106a70ef-8222-4fcb-8cce-705db0368b42","originalAuthorName":"兰云军"}],"doi":"","fpage":"752","id":"cc2ff9c2-b084-450e-8a6f-6400859d7ab2","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"97171c2f-5e14-42de-9944-fc7365d24094","keyword":"纳米SiO2","originalKeyword":"纳米SiO2"},{"id":"edc92380-d502-4de8-8d17-4d3108023649","keyword":"硅烷偶联","originalKeyword":"硅烷偶联剂"},{"id":"e06964c2-03b5-4a04-b346-7ed73327b580","keyword":"表面改性","originalKeyword":"表面改性"}],"language":"zh","publisherId":"clkxygc201205023","title":"硅烷偶联KH-570表面改性纳米SiO2","volume":"30","year":"2012"},{"abstractinfo":"用浸渍法制备了组成为V2O5∶P2O5∶SiO2=20∶x∶100(x=0~60,质量比)的V-P-O/SiO2催化,用TPR, IR和TPD法测定了苯和氧在催化表面的吸附,在无气相氧和吸附氧存在的条件下用连续TPD方法测定了苯化学吸附与催化表面活性端基氧之间的关系. 发现V-P-O/SiO2催化对苯的吸附至少有四种吸附中心,但有两种吸附中心是不具有催化活性的,一种对应于苯的物理吸附,而另一种则被CO2所占据.V-P-O/SiO2催化表面上氧的吸附随催化中P2O5含量的增加而增加,而苯的化学吸附随催化表面活性端基氧的增加而增加.","authors":[{"authorName":"刘加庚","id":"c72e4aab-e65d-4bf2-bba2-7702888d938a","originalAuthorName":"刘加庚"},{"authorName":"楼辉","id":"e5ec705c-08e4-43bd-9d56-8f344d1b0376","originalAuthorName":"楼辉"},{"authorName":"徐端钧","id":"29d27e45-36fa-47ba-9410-9cd03d93bbb2","originalAuthorName":"徐端钧"},{"authorName":"马福泰","id":"67babaf4-1b26-4e53-90ab-42ff447cd6ba","originalAuthorName":"马福泰"},{"authorName":"徐元植","id":"3d5b9802-582a-4656-9a03-4af14e86f790","originalAuthorName":"徐元植"}],"doi":"","fpage":"35","id":"2b7c0cba-0e07-40d5-a496-e5ffe7c2173a","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"51fea0ab-a259-497d-ab06-0d303f320b3f","keyword":"硅胶","originalKeyword":"硅胶"},{"id":"f41ea4e1-f626-4e0d-a98a-e67db2454a37","keyword":"氧化钒","originalKeyword":"氧化钒"},{"id":"c8d527a9-4bbf-4831-9f7a-c746d776fd27","keyword":"氧化磷","originalKeyword":"氧化磷"},{"id":"65fa16d9-9c71-467f-bd15-8f44d91badd5","keyword":"负载型催化","originalKeyword":"负载型催化剂"},{"id":"73fdc722-7980-4d98-8112-a20d4e4208e7","keyword":"吸附中心","originalKeyword":"吸附中心"},{"id":"42807c12-8615-4992-9f09-41b763dfa877","keyword":"晶格氧","originalKeyword":"晶格氧"}],"language":"zh","publisherId":"cuihuaxb200001011","title":"V-P-O/SiO2催化表面氧性质的研究","volume":"21","year":"2000"},{"abstractinfo":"甲苯二异氰酸酯(TDI)中的-NCO基团与纳米SiO2表面的-OH反应可使高反应活性的-NCO键合到SiO2上,从而有效地改性了纳米SiO2表面.本文系统地研究了反应物质量比、反应温度、溶剂种类和用量、纳米SiO2的活化处理等诸多因素对TDI与SiO2表面-OH反应的影响,并通过FTIR和TGA证实了反应产物的存在.","authors":[{"authorName":"钱翼清","id":"02cbd620-0843-48e6-8194-b58cbb3d1042","originalAuthorName":"钱翼清"},{"authorName":"范牛奔","id":"a0419fc0-4d69-49f1-b7a8-20ef9cf0c921","originalAuthorName":"范牛奔"},{"authorName":"孟海兵","id":"5d06102b-239f-4db7-af17-203741f139d5","originalAuthorName":"孟海兵"}],"doi":"","fpage":"652","id":"b3ce0e3e-2f11-4a56-8c74-74fd7aec4d45","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a669ec4e-1f6c-48cb-b0a2-a60bab3504a4","keyword":"TDI","originalKeyword":"TDI"},{"id":"88e31da0-2d66-4d92-a72a-e4800c954915","keyword":"纳米SiO2","originalKeyword":"纳米SiO2"},{"id":"8e5d5e24-4d79-4765-9fd8-d927faba5c9d","keyword":"表面改性","originalKeyword":"表面改性"}],"language":"zh","publisherId":"gncl200106031","title":"TDI改性纳米SiO2表面","volume":"32","year":"2001"},{"abstractinfo":"用St(o)ber法合成了单分散的SiO2微球,然后通过表面改性和室温缩合反应,在SiO2微球表面引入偶氮基团,从而制备得到SiO2引发.利用该引发原位引发苯乙烯进行自由基聚合,在SiO2微球表面成功接枝上聚苯乙烯分子链(PS),从而制备得到SiO2-PS复合微球.研究结果表明:合成的SiO2微球和SiO2引发均具有良好的球形形态,其粒径分别为250 nm和280nm.SiO2引发原位引发苯乙烯聚合后,在SiO2微球表面接枝上厚度约为40 nm的聚苯乙烯壳层,其约占复合微球质量的32%,从而形成了以SiO2微球为核、以聚苯乙烯为壳的无机/有机杂化微球.","authors":[{"authorName":"吴刊选","id":"e0f7f92d-22dc-48c7-8127-1a7e78609b57","originalAuthorName":"吴刊选"},{"authorName":"柴昌盛","id":"4f7995b2-2e8e-44b0-b5c5-b63976bd9518","originalAuthorName":"柴昌盛"},{"authorName":"高鑫","id":"63778ec8-2061-4da3-8cba-683ea6a9c95a","originalAuthorName":"高鑫"}],"doi":"","fpage":"18","id":"1393cbe2-fc99-49d5-9e06-eb37672af747","issue":"8","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"269c84dd-48bc-4c70-90c0-bea38022da69","keyword":"SiO2","originalKeyword":"SiO2"},{"id":"7bb6f3a7-62d7-47bd-811a-51a8649c56ce","keyword":"室温缩合","originalKeyword":"室温缩合"},{"id":"a8aabc0a-537b-4f0e-8fa1-c31e2df64629","keyword":"原位引发","originalKeyword":"原位引发"},{"id":"d72eba20-0903-485d-a4a1-2dacd809b15e","keyword":"聚苯乙烯","originalKeyword":"聚苯乙烯"},{"id":"89b7b26b-e750-45ac-b141-ca73622c4d1c","keyword":"杂化微球","originalKeyword":"杂化微球"}],"language":"zh","publisherId":"jsrclxb201408004","title":"SiO2引发的室温缩合合成及表面原位接枝聚苯乙烯","volume":"35","year":"2014"},{"abstractinfo":"以正硅酸乙酯(TEOS),γ-氨丙基三甲氧基硅烷(KH-550)和聚乙烯醇(PVA)为主要原料,基于溶胶-凝胶(sol-gel)工艺,制备了一种纳米SiO2/PVA杂化材料,并将其用于纸张表面增强.通过红外光谱(IR),X射线衍射(XRD),差示扫描量热(DSC)和热重分析(TGA)对杂化材料进行表征,结果表明,纳米SiO2和PVA之间产生了化学键的结合,无机相的引入使杂化材料的热分解温度升高,结晶度降低.初步应用实验结果表明,当增强用量为1%时,纸张的环压指数提高27%,拉伸强度提高40%,撕裂度提高33%,拉毛强度提高35%.","authors":[{"authorName":"赵艳娜","id":"d026ff0d-653c-4c89-aeb4-e3d50119a0bc","originalAuthorName":"赵艳娜"},{"authorName":"沈一丁","id":"5fc10792-28bd-49d8-a0f0-c7205c33cd73","originalAuthorName":"沈一丁"}],"doi":"","fpage":"120","id":"a7fe0f90-4d16-4f85-8454-ee2c92b61862","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"4bbf57ca-0e90-4cea-97b9-0861c1d8ac6c","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"5340dbce-d9a4-4634-a30e-dfbfff3a9606","keyword":"纳米SiO2","originalKeyword":"纳米SiO2"},{"id":"0830ec37-d1b4-4f4c-8c7c-72af9a8d8199","keyword":"杂化材料","originalKeyword":"杂化材料"},{"id":"b7268efd-91e3-42ce-8efe-0a5af3f59b90","keyword":"增强","originalKeyword":"增强剂"}],"language":"zh","publisherId":"gfzclkxygc201004032","title":"纳米SiO2/PVA杂化材料纸张表面增强的制备及性能","volume":"26","year":"2010"},{"abstractinfo":"材料的性能往往与其结构密不可分,超细SiO2表面的羟基在很大程度上限制了它的应用,故对超细SiO2进行表面改性显得至关重要.本文综述了超细SiO2表面改性的研究进展.总结了有机表面改性、无机包覆改性以及高能辅助改性三大类改性方法对超细SiO2进行改性的效果及机理,详细介绍了硅烷偶联对超细SiO2进行改性的作用机理.对未来超细SiO2的改性方面研究工作进行了展望.","authors":[{"authorName":"邱惠惠","id":"ebac1eff-6151-461a-8055-aa43125e5216","originalAuthorName":"邱惠惠"},{"authorName":"罗康碧","id":"c9844553-a3c5-4aab-a9eb-48ab6b672232","originalAuthorName":"罗康碧"},{"authorName":"李沪萍","id":"a196cd1d-2e4d-4a2c-a9f4-b72eaf27da5d","originalAuthorName":"李沪萍"}],"doi":"","fpage":"2221","id":"94bab3e6-ea25-4074-b3a7-54493064867f","issue":"8","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"f6108b61-88d8-4a06-9d29-ba65e450cd72","keyword":"超细SiO2","originalKeyword":"超细SiO2"},{"id":"da0b9a8d-e47d-4f44-a54e-62d4b0ce917d","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"18b12f59-d951-4cb8-9376-54074dd98c24","keyword":"进展","originalKeyword":"进展"}],"language":"zh","publisherId":"gsytb201508027","title":"超细SiO2表面改性研究进展","volume":"34","year":"2015"},{"abstractinfo":"通过研究纳米SiO2/水纳米流体的稳定性建立了差示透光率法,并利用差示透光率法和重力沉降法研究了阳离子表面活性剂十四烷基三甲基溴化铵(TrAB)、十六烷基三甲基溴化铵(CTAB)和十八烷基三甲基溴化铵(OTAB)对纳米SiO2流体稳定性的影响.结果表明:阳离子表面活性剂吸附在纳米SiO2颗粒表面后促使纳米流体形成凝胶,且不同阳离子表面活性剂对2.5wt% SiO2纳米流体稳定性的影响均存在三个临界浓度C1、C2和C3,这三个临界浓度的大小与阳离子表面活性剂疏水链长密切相关,碳链越长,相应临界浓度越低,并提出了阳离子表面活性剂在纳米SiO2表面吸附后纳米颗粒之间的疏水缔合作用理论.","authors":[{"authorName":"郭立娟","id":"df152b57-881f-41b5-81e6-3fcb6ebfb366","originalAuthorName":"郭立娟"},{"authorName":"宋汝彤","id":"4a71be8c-0659-40b7-89d7-b2b424ccca33","originalAuthorName":"宋汝彤"},{"authorName":"郭拥军","id":"6c6f818d-470a-46b4-995a-2a119cc53344","originalAuthorName":"郭拥军"},{"authorName":"冯茹森","id":"1d2a89ff-b53f-461f-a173-d3d863ca5d1b","originalAuthorName":"冯茹森"},{"authorName":"梁严","id":"b11ffbb2-3aab-4ce8-ad09-796f1bca32ac","originalAuthorName":"梁严"},{"authorName":"周竞达","id":"5336c4ad-5ad0-4d39-8589-f0503c5a5026","originalAuthorName":"周竞达"},{"authorName":"高飞龙","id":"8394e999-01f6-4954-8ca6-fe5167ad02ee","originalAuthorName":"高飞龙"}],"doi":"","fpage":"940","id":"692e333e-ef7c-46d7-9a89-3649b440df53","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"24189f56-205c-44ce-ac46-ad4dabbf93d5","keyword":"纳米SiO2流体","originalKeyword":"纳米SiO2流体"},{"id":"61317156-c03c-45a5-9f25-8e2dd8acd386","keyword":"阳离子表面活性剂","originalKeyword":"阳离子表面活性剂"},{"id":"77bb388e-eac7-4432-b87b-796165ed8b50","keyword":"差示透光率法","originalKeyword":"差示透光率法"},{"id":"8aedf37a-1441-4901-bf34-9c8a24c7c504","keyword":"重力沉降法","originalKeyword":"重力沉降法"},{"id":"d56e38d7-0876-4446-8041-a94967f60d28","keyword":"稳定性","originalKeyword":"稳定性"}],"language":"zh","publisherId":"gsytb201404046","title":"阳离子表面活性剂对纳米SiO2流体稳定性的影响","volume":"33","year":"2014"}],"totalpage":11679,"totalrecord":116788}