欢迎登录材料期刊网

材料期刊网

高级检索

采用包括锻造与重熔的应变诱导熔化激活(SIMA)法制备 ZCuSn10铜合金半固态坯料,分析重熔过程中重熔温度和保温时间对ZCuSn10半固态坯料微观组织的影响。结果表明:在900℃保温时,随着保温时间的延长,合金的平均晶粒直径增大,保温时间由5 min延长至50 min时,平均晶粒直径由45.9μm增大至74.7μm;晶粒形状因子随保温时间的延长先减小后增大。保温30 min时,随着保温温度的升高,平均晶粒直径减小,当保温温度由850℃升高至925℃时,平均晶粒直径由72.6μm减小至64.1μm;晶粒形状因子随保温温度的升高而增大。900℃保温30 min获得的半固态组织均匀、球化效果好,平均晶粒尺寸为64.7μm,形状因子为1.65。

Semi-solid ZCuSn10 copper alloy was fabricated by strain induced melt activated (SIMA) method including the forging and remelting process. The effect of remelting temperature and holding time on the microstructure of semi-solid ZCuSn10 copper alloy was investigated. The results indicate that, with the increase of the holding time at 900℃, the mean grain diameter of the alloy increases. With the increase of the holding time from 5 min to 50 min, the mean grain diameter increases from 45.9 μm to 74.7 μm, and the shape factor decreases first and then increases. With the increase of the remelting temperature at the holding time of 30 min, the mean grain diameter decreases. With increasing the remelting temperature from 850℃to 925℃, the mean grain diameter decreases from 72.6 μm to 64.1 μm, and the shape factor increases. The semi-solid ZCuSn10 copper alloy with uniform and spherical grains can be obtained at remelting temperature of 900℃and the holding time of 30 min, the mean grain diameter of the alloy is 64.7 μm and the shape factor is 1.65.

参考文献

[1] SPENCER D B;MEHRABIAN R;FLEMINGS M C .Rheological behavior of Sn-15 Pct Pb in the crystallization range[J].Metallurgical Transactions,1972,3(07):1925-1932.
[2] FLEMINGS M C .Behavior of metal alloys in the semi-solid state[J].Metallurgical Transactions A,1991,22(05):957-981.
[3] 孙国强.半固态加工技术及其应用[J].稀有金属,2003(03):382-384.
[4] 罗守靖,姜巨福,杜之明.半固态金属成形研究的新进展、工业应用及其思考[J].机械工程学报,2003(11):52-60.
[5] 罗守靖,田文彤,谢水生,毛卫民.半固态加工技术及应用[J].中国有色金属学报,2000(06):765.
[6] KIRKWOOD D H .Semi-solid metal processing[J].International Materials Reviews,1994,39(05):173-189.
[7] H.Q. Lin;J.G. Wang;H.Y. Wang .Effect of predeformation on the globular grains in AZ91D alloy during strain induced melt activation (SIMA) process[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2007(1/2):141-147.
[8] 张小立,凌向军,李廷举,谢水生,金云学.电磁搅拌过程中镁合金半固态浆料初生相颗粒的团簇行为[J].中国有色金属学报,2012(09):2448-2453.
[9] Dong J.;Cui JZ.;Le QC.;Lu GM. .Liquidus semi-continuous casting, reheating and thixoforming of a wrought aluminum alloy 7075[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):234-242.
[10] 甘责生,张磊,贝舒瑜,卢毅,杨滨.TiB2颗粒对喷射沉积Si-30AI复合材料显微组织的影响[J].中国有色金属学报(英文版),2011(10):2242-2247.
[11] 姜巨福,林鑫,王迎,曲建俊,罗守靖.等径道角挤压预变形AZ61镁合金在半固态等温处理中的微观组织演变[J].中国有色金属学报(英文版),2012(03):555-563.
[12] YOUNG K P;KYONKA C P;COURTOIS J A .Fine grained metal composition[P].US,4415374,1983-11-15.
[13] 夏明许,郑红星,袁森,李建国.大挤压形变AZ91 D镁合金半固态等温组织演变[J].材料科学与工艺,2005(03):287-290.
[14] 曹富荣,管仁国,陈礼清,赵占勇,任勇.二次加热过程中半固态AZ31镁合金的显微组织演变[J].中国有色金属学报,2012(01):7-14.
[15] 翟秋亚,袁森,蒋百灵.AZ91镁合金的SIMA法半固态组织特征[J].中国有色金属学报,2005(01):123-128.
[16] 姚亮宇,袁森,王武孝,蒋百灵,唐文亭.SIMA法处理AZ91D镁合金压缩形变及半固态等温组织的特征[J].中国有色金属学报,2004(04):660-664.
[17] 姜巨福,王迎,柳君,曲建俊,杜之明,罗守靖.新SIMA制备坯料触变挤压AZ61镁合金零件的组织与性能[J].中国有色金属学报(英文版),2013(03):576-585.
[18] 张倩倩,曹占义,刘勇兵.铝含量对应变诱发法半固态镁合金的影响[J].材料热处理学报,2010(04):24-28.
[19] 耿浩然;王守仁;王艳.铸造锌、铜合金[M].北京:化学工业出版社,2006
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%